Nuprl Lemma : assert-q_le-eq

[a,b:ℚ].  ((↑q_le(a;b)) (a ≤ b) ∈ ℙ)


Proof




Definitions occuring in Statement :  qle: r ≤ s q_le: q_le(r;s) rationals: assert: b uall: [x:A]. B[x] prop: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  assert-q_le qle_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality axiomEquality because_Cache

Latex:
\mforall{}[a,b:\mBbbQ{}].    ((\muparrow{}q\_le(a;b))  =  (a  \mleq{}  b))



Date html generated: 2016_05_15-PM-10_57_36
Last ObjectModification: 2015_12_27-PM-07_51_43

Theory : rationals


Home Index