Nuprl Lemma : assert-q_le-eq
∀[a,b:ℚ].  ((↑q_le(a;b)) = (a ≤ b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
q_le: q_le(r;s)
, 
rationals: ℚ
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
assert-q_le, 
qle_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[a,b:\mBbbQ{}].    ((\muparrow{}q\_le(a;b))  =  (a  \mleq{}  b))
Date html generated:
2016_05_15-PM-10_57_36
Last ObjectModification:
2015_12_27-PM-07_51_43
Theory : rationals
Home
Index