Nuprl Lemma : assert-q_le

[a,b:ℚ].  (↑q_le(a;b) a ≤ b)


Proof




Definitions occuring in Statement :  qle: r ≤ s q_le: q_le(r;s) rationals: assert: b uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  qle: r ≤ s q_le: q_le(r;s) grp_leq: a ≤ b qadd_grp: <ℚ+> grp_le: b pi2: snd(t) pi1: fst(t) infix_ap: y uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  rationals_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom lemma_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[a,b:\mBbbQ{}].    (\muparrow{}q\_le(a;b)  \msim{}  a  \mleq{}  b)



Date html generated: 2016_05_15-PM-10_57_33
Last ObjectModification: 2015_12_27-PM-07_51_50

Theory : rationals


Home Index