Nuprl Lemma : assert-q_le
∀[a,b:ℚ].  (↑q_le(a;b) ~ a ≤ b)
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
q_le: q_le(r;s)
, 
rationals: ℚ
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
qle: r ≤ s
, 
q_le: q_le(r;s)
, 
grp_leq: a ≤ b
, 
qadd_grp: <ℚ+>
, 
grp_le: ≤b
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[a,b:\mBbbQ{}].    (\muparrow{}q\_le(a;b)  \msim{}  a  \mleq{}  b)
Date html generated:
2016_05_15-PM-10_57_33
Last ObjectModification:
2015_12_27-PM-07_51_50
Theory : rationals
Home
Index