Nuprl Lemma : rat-cube-face_wf

[k:ℕ]. ∀[c,d:ℚCube(k)].  (c ≤ d ∈ ℙ)


Proof




Definitions occuring in Statement :  rat-cube-face: c ≤ d rational-cube: Cube(k) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  rational-cube: Cube(k) nat: all: x:A. B[x] prop: rat-cube-face: c ≤ d member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf rat-interval-face_wf int_seg_wf
Rules used in proof :  universeIsType isectIsTypeImplies isect_memberEquality_alt inhabitedIsType equalitySymmetry equalityTransitivity axiomEquality applyEquality hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid functionEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c,d:\mBbbQ{}Cube(k)].    (c  \mleq{}  d  \mmember{}  \mBbbP{})



Date html generated: 2019_10_29-AM-07_49_33
Last ObjectModification: 2019_10_17-PM-01_29_14

Theory : rationals


Home Index