Nuprl Lemma : inhabited-rat-cube-face
∀[k:ℕ]. ∀[c:ℚCube(k)].  ((↑Inhabited(c)) 
⇒ (∀f:ℚCube(k). (f ≤ c 
⇒ (↑Inhabited(f)))))
Proof
Definitions occuring in Statement : 
inhabited-rat-cube: Inhabited(c)
, 
rat-cube-face: c ≤ d
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
or: P ∨ Q
, 
rat-interval-face: I ≤ J
, 
rational-interval: ℚInterval
, 
rational-cube: ℚCube(k)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
rat-cube-face: c ≤ d
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
assert_witness, 
inhabited-rat-cube_wf, 
rat-cube-face_wf, 
int_seg_wf, 
istype-assert, 
subtype_rel_self, 
rational-interval_wf, 
assert_of_tt, 
inhabited-rat-point-interval, 
true_wf, 
squash_wf, 
rat-point-interval_wf, 
inhabited-rat-interval_wf, 
assert_functionality_wrt_uiff, 
assert-inhabited-rat-cube
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
functionIsTypeImplies, 
rename, 
setElimination, 
independent_functionElimination, 
equalityIstype, 
unionIsType, 
independent_pairEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
because_Cache, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality_alt, 
unionElimination, 
sqequalRule, 
inhabitedIsType, 
applyEquality, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    ((\muparrow{}Inhabited(c))  {}\mRightarrow{}  (\mforall{}f:\mBbbQ{}Cube(k).  (f  \mleq{}  c  {}\mRightarrow{}  (\muparrow{}Inhabited(f)))))
Date html generated:
2019_10_29-AM-07_51_49
Last ObjectModification:
2019_10_17-PM-05_49_25
Theory : rationals
Home
Index