Nuprl Lemma : inhabited-rat-cube-face

[k:ℕ]. ∀[c:ℚCube(k)].  ((↑Inhabited(c))  (∀f:ℚCube(k). (f ≤  (↑Inhabited(f)))))


Proof




Definitions occuring in Statement :  inhabited-rat-cube: Inhabited(c) rat-cube-face: c ≤ d rational-cube: Cube(k) nat: assert: b uall: [x:A]. B[x] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  nat: subtype_rel: A ⊆B guard: {T} true: True prop: squash: T or: P ∨ Q rat-interval-face: I ≤ J rational-interval: Interval rational-cube: Cube(k) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) rat-cube-face: c ≤ d all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf assert_witness inhabited-rat-cube_wf rat-cube-face_wf int_seg_wf istype-assert subtype_rel_self rational-interval_wf assert_of_tt inhabited-rat-point-interval true_wf squash_wf rat-point-interval_wf inhabited-rat-interval_wf assert_functionality_wrt_uiff assert-inhabited-rat-cube
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt functionIsTypeImplies rename setElimination independent_functionElimination equalityIstype unionIsType independent_pairEquality baseClosed imageMemberEquality natural_numberEquality because_Cache universeIsType equalitySymmetry equalityTransitivity imageElimination lambdaEquality_alt unionElimination sqequalRule inhabitedIsType applyEquality dependent_functionElimination independent_isectElimination productElimination hypothesis hypothesisEquality thin isectElimination extract_by_obid sqequalHypSubstitution lambdaFormation_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    ((\muparrow{}Inhabited(c))  {}\mRightarrow{}  (\mforall{}f:\mBbbQ{}Cube(k).  (f  \mleq{}  c  {}\mRightarrow{}  (\muparrow{}Inhabited(f)))))



Date html generated: 2019_10_29-AM-07_51_49
Last ObjectModification: 2019_10_17-PM-05_49_25

Theory : rationals


Home Index