Nuprl Lemma : inhabited-rat-point-interval
∀[a:ℚ]. (Inhabited([a]) ~ tt)
Proof
Definitions occuring in Statement : 
inhabited-rat-interval: Inhabited(I)
, 
rat-point-interval: [a]
, 
rationals: ℚ
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
prop: ℙ
, 
squash: ↓T
, 
rat-point-interval: [a]
, 
inhabited-rat-interval: Inhabited(I)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rationals_wf, 
istype-true, 
qle_reflexivity, 
qle_wf, 
iff_weakening_equal, 
subtype_rel_self, 
assert-q_le-eq, 
true_wf, 
squash_wf, 
iff_wf, 
q_le_wf, 
iff_imp_equal_bool, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq
Rules used in proof : 
axiomSqEquality, 
dependent_functionElimination, 
lambdaFormation_alt, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
inhabitedIsType, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality_alt, 
applyEquality, 
because_Cache, 
hypothesisEquality, 
sqequalRule, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:\mBbbQ{}].  (Inhabited([a])  \msim{}  tt)
Date html generated:
2019_10_29-AM-07_47_43
Last ObjectModification:
2019_10_17-PM-05_01_15
Theory : rationals
Home
Index