Nuprl Lemma : rat-cube-faces_wf

[k:ℕ]. ∀[c:ℚCube(k)].  rat-cube-faces(k;c) ∈ {f:ℚCube(k)| f ≤ c ∧ (dim(f) (dim(c) 1) ∈ ℤ)}  List supposing ↑Inhabit\000Ced(c)


Proof




Definitions occuring in Statement :  rat-cube-faces: rat-cube-faces(k;c) rat-cube-dimension: dim(c) inhabited-rat-cube: Inhabited(c) rat-cube-face: c ≤ d rational-cube: Cube(k) list: List nat: assert: b uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q bfalse: ff top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  less_than: a < b ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 le: A ≤ B lelt: i ≤ j < k rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True int_seg: {i..j-} implies:  Q squash: T uiff: uiff(P;Q) cand: c∧ B all: x:A. B[x] nat: subtype_rel: A ⊆B rational-cube: Cube(k) prop: and: P ∧ Q rat-cube-faces: rat-cube-faces(k;c) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat inhabited-rat-cube_wf istype-assert nil_wf upper-rc-face-dimension upper-rc-face-is-face upper-rc-face_wf int_subtype_base lelt_wf set_subtype_base neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_and_lemma istype-int itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat nat_properties int_seg_properties eqtt_to_assert iff_weakening_equal subtype_rel_self rat-cube-dimension_wf subtract_wf lower-rc-face-dimension istype-universe true_wf squash_wf equal_wf assert_of_eq_int lower-rc-face-is-face lower-rc-face_wf cons_wf assert_wf list_wf rat-interval-dimension_wf eq_int_wf upto_wf int_seg_wf mapfilter_wf equal-wf-base rat-cube-face_wf rational-cube_wf concat_wf
Rules used in proof :  isectIsTypeImplies axiomEquality setIsType sqequalBase addEquality minusEquality productIsType cumulativity promote_hyp equalityIstype voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation equalityElimination unionElimination baseClosed imageMemberEquality independent_functionElimination intEquality universeEquality instantiate equalitySymmetry equalityTransitivity imageElimination independent_isectElimination productElimination independent_pairFormation dependent_functionElimination dependent_set_memberEquality_alt inhabitedIsType lambdaFormation_alt rename setElimination universeIsType applyEquality lambdaEquality_alt natural_numberEquality closedConclusion because_Cache productEquality hypothesis hypothesisEquality setEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    rat-cube-faces(k;c)  \mmember{}  \{f:\mBbbQ{}Cube(k)|  f  \mleq{}  c  \mwedge{}  (dim(f)  =  (dim(c)  -  1))\}    List  su\000Cpposing  \muparrow{}Inhabited(c)



Date html generated: 2019_10_29-AM-07_57_16
Last ObjectModification: 2019_10_17-PM-05_26_10

Theory : rationals


Home Index