Nuprl Lemma : rat-cube-faces_wf
∀[k:ℕ]. ∀[c:ℚCube(k)].  rat-cube-faces(k;c) ∈ {f:ℚCube(k)| f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ)}  List supposing ↑Inhabit\000Ced(c)
Proof
Definitions occuring in Statement : 
rat-cube-faces: rat-cube-faces(k;c)
, 
rat-cube-dimension: dim(c)
, 
inhabited-rat-cube: Inhabited(c)
, 
rat-cube-face: c ≤ d
, 
rational-cube: ℚCube(k)
, 
list: T List
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
bfalse: ff
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
less_than: a < b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
int_seg: {i..j-}
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
rational-cube: ℚCube(k)
, 
prop: ℙ
, 
and: P ∧ Q
, 
rat-cube-faces: rat-cube-faces(k;c)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
inhabited-rat-cube_wf, 
istype-assert, 
nil_wf, 
upper-rc-face-dimension, 
upper-rc-face-is-face, 
upper-rc-face_wf, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
int_seg_properties, 
eqtt_to_assert, 
iff_weakening_equal, 
subtype_rel_self, 
rat-cube-dimension_wf, 
subtract_wf, 
lower-rc-face-dimension, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
assert_of_eq_int, 
lower-rc-face-is-face, 
lower-rc-face_wf, 
cons_wf, 
assert_wf, 
list_wf, 
rat-interval-dimension_wf, 
eq_int_wf, 
upto_wf, 
int_seg_wf, 
mapfilter_wf, 
equal-wf-base, 
rat-cube-face_wf, 
rational-cube_wf, 
concat_wf
Rules used in proof : 
isectIsTypeImplies, 
axiomEquality, 
setIsType, 
sqequalBase, 
addEquality, 
minusEquality, 
productIsType, 
cumulativity, 
promote_hyp, 
equalityIstype, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
equalityElimination, 
unionElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
intEquality, 
universeEquality, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
independent_isectElimination, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
setElimination, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
closedConclusion, 
because_Cache, 
productEquality, 
hypothesis, 
hypothesisEquality, 
setEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    rat-cube-faces(k;c)  \mmember{}  \{f:\mBbbQ{}Cube(k)|  f  \mleq{}  c  \mwedge{}  (dim(f)  =  (dim(c)  -  1))\}    List  su\000Cpposing  \muparrow{}Inhabited(c)
Date html generated:
2019_10_29-AM-07_57_16
Last ObjectModification:
2019_10_17-PM-05_26_10
Theory : rationals
Home
Index