Nuprl Lemma : upper-rc-face-is-face
∀k:ℕ. ∀c:ℚCube(k). ∀j:ℕk.  upper-rc-face(c;j) ≤ c
Proof
Definitions occuring in Statement : 
upper-rc-face: upper-rc-face(c;j)
, 
rat-cube-face: c ≤ d
, 
rational-cube: ℚCube(k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
nat: ℕ
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
or: P ∨ Q
, 
rat-interval-face: I ≤ J
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
pi2: snd(t)
, 
rational-interval: ℚInterval
, 
implies: P 
⇒ Q
, 
rational-cube: ℚCube(k)
, 
member: t ∈ T
, 
upper-rc-face: upper-rc-face(c;j)
, 
rat-cube-face: c ≤ d
, 
all: ∀x:A. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
int_seg_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
rat-point-interval_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf
Rules used in proof : 
natural_numberEquality, 
universeIsType, 
voidElimination, 
independent_functionElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation_alt, 
because_Cache, 
equalityIstype, 
inlFormation_alt, 
inrFormation_alt, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
introduction, 
productElimination, 
thin, 
hypothesis, 
inhabitedIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
applyEquality, 
cut, 
sqequalRule, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).  \mforall{}j:\mBbbN{}k.    upper-rc-face(c;j)  \mleq{}  c
Date html generated:
2019_10_29-AM-07_56_45
Last ObjectModification:
2019_10_17-PM-03_35_31
Theory : rationals
Home
Index