Nuprl Lemma : lower-rc-face-is-face
∀k:ℕ. ∀c:ℚCube(k). ∀j:ℕk. lower-rc-face(c;j) ≤ c
Proof
Definitions occuring in Statement :
lower-rc-face: lower-rc-face(c;j)
,
rat-cube-face: c ≤ d
,
rational-cube: ℚCube(k)
,
int_seg: {i..j-}
,
nat: ℕ
,
all: ∀x:A. B[x]
,
natural_number: $n
Definitions unfolded in proof :
nat: ℕ
,
false: False
,
assert: ↑b
,
bnot: ¬bb
,
guard: {T}
,
sq_type: SQType(T)
,
exists: ∃x:A. B[x]
,
bfalse: ff
,
or: P ∨ Q
,
rat-interval-face: I ≤ J
,
ifthenelse: if b then t else f fi
,
uimplies: b supposing a
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
btrue: tt
,
it: ⋅
,
unit: Unit
,
bool: 𝔹
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
pi1: fst(t)
,
rational-interval: ℚInterval
,
implies: P
⇒ Q
,
rational-cube: ℚCube(k)
,
member: t ∈ T
,
lower-rc-face: lower-rc-face(c;j)
,
rat-cube-face: c ≤ d
,
all: ∀x:A. B[x]
Lemmas referenced :
istype-nat,
rational-cube_wf,
int_seg_wf,
neg_assert_of_eq_int,
assert-bnot,
bool_subtype_base,
bool_wf,
subtype_base_sq,
bool_cases_sqequal,
eqff_to_assert,
rat-point-interval_wf,
assert_of_eq_int,
eqtt_to_assert,
eq_int_wf
Rules used in proof :
natural_numberEquality,
universeIsType,
inrFormation_alt,
voidElimination,
independent_functionElimination,
cumulativity,
instantiate,
dependent_functionElimination,
promote_hyp,
dependent_pairFormation_alt,
because_Cache,
equalityIstype,
unionIsType,
inlFormation_alt,
independent_isectElimination,
equalitySymmetry,
equalityTransitivity,
equalityElimination,
unionElimination,
rename,
setElimination,
isectElimination,
extract_by_obid,
introduction,
productElimination,
thin,
hypothesis,
inhabitedIsType,
hypothesisEquality,
sqequalHypSubstitution,
applyEquality,
cut,
sqequalRule,
lambdaFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}. \mforall{}c:\mBbbQ{}Cube(k). \mforall{}j:\mBbbN{}k. lower-rc-face(c;j) \mleq{} c
Date html generated:
2019_10_29-AM-07_56_08
Last ObjectModification:
2019_10_17-PM-03_06_11
Theory : rationals
Home
Index