Nuprl Lemma : assert-is-rat-cube-face
∀k:ℕ. ∀c,d:ℚCube(k). uiff(↑is-rat-cube-face(k;c;d);c ≤ d)
Proof
Definitions occuring in Statement :
is-rat-cube-face: is-rat-cube-face(k;c;d)
,
rat-cube-face: c ≤ d
,
rational-cube: ℚCube(k)
,
nat: ℕ
,
assert: ↑b
,
uiff: uiff(P;Q)
,
all: ∀x:A. B[x]
Definitions unfolded in proof :
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
false: False
,
bfalse: ff
,
true: True
,
uimplies: b supposing a
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
isl: isl(x)
,
or: P ∨ Q
,
decidable: Dec(P)
,
implies: P
⇒ Q
,
member: t ∈ T
,
is-rat-cube-face: is-rat-cube-face(k;c;d)
,
all: ∀x:A. B[x]
Lemmas referenced :
istype-nat,
rational-cube_wf,
rat-cube-face_wf,
istype-void,
istype-true,
rat-cube-face-decider_wf
Rules used in proof :
equalityIstype,
isectElimination,
universeIsType,
independent_functionElimination,
voidElimination,
natural_numberEquality,
rename,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
isect_memberFormation_alt,
independent_pairFormation,
sqequalRule,
unionElimination,
inhabitedIsType,
hypothesis,
hypothesisEquality,
thin,
dependent_functionElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
lambdaFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}. \mforall{}c,d:\mBbbQ{}Cube(k). uiff(\muparrow{}is-rat-cube-face(k;c;d);c \mleq{} d)
Date html generated:
2019_10_29-AM-07_50_22
Last ObjectModification:
2019_10_19-AM-10_50_12
Theory : rationals
Home
Index