Nuprl Lemma : rat-cube-face-decider_wf

k:ℕ. ∀c,d:ℚCube(k).  (rat-cube-face-decider(k;c;d) ∈ Dec(c ≤ d))


Proof




Definitions occuring in Statement :  rat-cube-face-decider: rat-cube-face-decider(k;c;d) rat-cube-face: c ≤ d rational-cube: Cube(k) nat: decidable: Dec(P) all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] subtype_rel: A ⊆B decidable__rat-cube-face-ext rat-cube-face-decider: rat-cube-face-decider(k;c;d) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  istype-nat rat-cube-face_wf decidable_wf rational-cube_wf nat_wf subtype_rel_self decidable__rat-cube-face-ext
Rules used in proof :  universeIsType inhabitedIsType hypothesisEquality functionEquality isectElimination sqequalHypSubstitution introduction hypothesis extract_by_obid instantiate thin applyEquality sqequalRule cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c,d:\mBbbQ{}Cube(k).    (rat-cube-face-decider(k;c;d)  \mmember{}  Dec(c  \mleq{}  d))



Date html generated: 2019_10_29-AM-07_50_04
Last ObjectModification: 2019_10_19-AM-10_44_47

Theory : rationals


Home Index