Nuprl Lemma : decidable__rat-cube-face-ext

k:ℕ. ∀c,d:ℚCube(k).  Dec(c ≤ d)


Proof




Definitions occuring in Statement :  rat-cube-face: c ≤ d rational-cube: Cube(k) nat: decidable: Dec(P) all: x:A. B[x]
Definitions unfolded in proof :  has-value: (a)↓ implies:  Q all: x:A. B[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] uimplies: supposing a so_apply: x[s] top: Top so_lambda: λ2x.t[x] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] decidable__false decidable__equal_set decidable__equal_rationals decidable__equal_product decidable__implies any: any x decidable__equal_rational-interval decidable__or decidable__not decidable__exists_int_seg decidable__rat-interval-face decidable__all_int_seg decidable__rat-cube-face rat-cube-face-decider: rat-cube-face-decider(k;c;d) ifunion: ifunion(b; t) rat-point-interval: [a] ifthenelse: if then else fi  it: member: t ∈ T
Lemmas referenced :  is-exception_wf has-value_wf_base lifting-strict-decide lifting-strict-spread strict4-decide istype-void lifting-strict-callbyvalue decidable__rat-cube-face decidable__false decidable__equal_set decidable__equal_rationals decidable__equal_product decidable__implies decidable__equal_rational-interval decidable__or decidable__not decidable__exists_int_seg decidable__rat-interval-face decidable__all_int_seg
Rules used in proof :  decideExceptionCases unionElimination callbyvalueDecide because_Cache closedConclusion baseApply exceptionSqequal axiomSqleEquality spreadExceptionCases independent_functionElimination dependent_functionElimination hypothesisEquality equalityIstype sqleReflexivity productElimination callbyvalueSpread divergentSqle sqequalSqle lambdaFormation_alt inhabitedIsType independent_isectElimination voidElimination isect_memberEquality_alt baseClosed isectElimination equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c,d:\mBbbQ{}Cube(k).    Dec(c  \mleq{}  d)



Date html generated: 2019_10_29-AM-07_49_58
Last ObjectModification: 2019_10_19-AM-10_43_31

Theory : rationals


Home Index