Nuprl Lemma : decidable__equal_rational-interval
∀I,J:ℚInterval.  Dec(I = J ∈ ℚInterval)
Proof
Definitions occuring in Statement : 
rational-interval: ℚInterval
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
rational-interval: ℚInterval
Lemmas referenced : 
decidable__equal_set, 
decidable__equal_rationals, 
qle_wf, 
rationals_wf, 
decidable__equal_product
Rules used in proof : 
productIsType, 
setIsType, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
hypothesisEquality, 
setEquality, 
lambdaEquality_alt, 
sqequalRule, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}I,J:\mBbbQ{}Interval.    Dec(I  =  J)
Date html generated:
2019_10_29-AM-07_46_45
Last ObjectModification:
2019_10_19-AM-10_35_15
Theory : rationals
Home
Index