Nuprl Lemma : is-rat-cube-face_wf

k:ℕ. ∀c,d:ℚCube(k).  (is-rat-cube-face(k;c;d) ∈ 𝔹)


Proof




Definitions occuring in Statement :  is-rat-cube-face: is-rat-cube-face(k;c;d) rational-cube: Cube(k) nat: bool: 𝔹 all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] isl: isl(x) or: P ∨ Q decidable: Dec(P) implies:  Q is-rat-cube-face: is-rat-cube-face(k;c;d) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  istype-nat rational-cube_wf bfalse_wf btrue_wf rat-cube-face-decider_wf
Rules used in proof :  isectElimination universeIsType independent_functionElimination equalitySymmetry equalityTransitivity equalityIstype unionElimination inhabitedIsType hypothesis hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c,d:\mBbbQ{}Cube(k).    (is-rat-cube-face(k;c;d)  \mmember{}  \mBbbB{})



Date html generated: 2019_10_29-AM-07_50_16
Last ObjectModification: 2019_10_19-AM-10_47_49

Theory : rationals


Home Index