Step
*
1
1
1
of Lemma
decidable__qless
1. a : ℚ
2. b : ℚ
⊢ (qpositive(b - a) ∨bqeq(a;b)) ∧b (¬b(qpositive(-(b - a)) ∨bqeq(b;a))) = qpositive(b - a)
BY
{ xxx(xxxAutoBoolCase ⌜qeq(a;b)⌝⋅xxx THEN xxxAutoBoolCase ⌜qeq(b;a)⌝⋅xxx)xxx }
1
1. a : ℚ
2. b : ℚ
3. a = b ∈ ℚ
4. b = a ∈ ℚ
⊢ (qpositive(b - a) ∨btt) ∧b (¬b(qpositive(-(b - a)) ∨btt)) = qpositive(b - a)
2
1. a : ℚ
2. b : ℚ
3. ¬(b = a ∈ ℚ)
4. ¬(a = b ∈ ℚ)
⊢ (qpositive(b - a) ∨bff) ∧b (¬b(qpositive(-(b - a)) ∨bff)) = qpositive(b - a)
Latex:
Latex:
1. a : \mBbbQ{}
2. b : \mBbbQ{}
\mvdash{} (qpositive(b - a) \mvee{}\msubb{}qeq(a;b)) \mwedge{}\msubb{} (\mneg{}\msubb{}(qpositive(-(b - a)) \mvee{}\msubb{}qeq(b;a))) = qpositive(b - a)
By
Latex:
xxx(xxxAutoBoolCase \mkleeneopen{}qeq(a;b)\mkleeneclose{}\mcdot{}xxx THEN xxxAutoBoolCase \mkleeneopen{}qeq(b;a)\mkleeneclose{}\mcdot{}xxx)xxx
Home
Index