Step
*
of Lemma
egyptian_wf
∀q:ℚ. (egyptian(q) ∈ {p:ℤ × (ℕ+ List)| let x,L = p in q = (x + Σ0 ≤ i < ||L||. (1/L[i])) ∈ ℚ} )
BY
{ (Auto THEN Unfold `egyptian` 0 THEN (GenConclAtAddr [2;2] THENA (Auto THEN Auto'))) }
1
1. q : ℚ
2. v : ∃p:ℤ × (ℕ+ List) [let x,L = p
in q = (x + Σ0 ≤ i < ||L||. (1/L[i])) ∈ ℚ]
3. (TERMOF{egyptian-number:o, 1:l} q) = v ∈ (∃p:ℤ × (ℕ+ List) [let x,L = p in q = (x + Σ0 ≤ i < ||L||. (1/L[i])) ∈ ℚ])
⊢ norm-pair(λx.x;norm-list(λx.x)) v ∈ {p:ℤ × (ℕ+ List)| let x,L = p in q = (x + Σ0 ≤ i < ||L||. (1/L[i])) ∈ ℚ}
Latex:
Latex:
\mforall{}q:\mBbbQ{}. (egyptian(q) \mmember{} \{p:\mBbbZ{} \mtimes{} (\mBbbN{}\msupplus{} List)| let x,L = p in q = (x + \mSigma{}0 \mleq{} i < ||L||. (1/L[i]))\} )
By
Latex:
(Auto THEN Unfold `egyptian` 0 THEN (GenConclAtAddr [2;2] THENA (Auto THEN Auto')))
Home
Index