Nuprl Lemma : egyptian_wf

q:ℚ(egyptian(q) ∈ {p:ℤ × (ℕ+ List)| let x,L in (x + Σ0 ≤ i < ||L||. (1/L[i])) ∈ ℚ)


Proof




Definitions occuring in Statement :  egyptian: egyptian(q) qsum: Σa ≤ j < b. E[j] qdiv: (r/s) qadd: s rationals: select: L[n] length: ||as|| list: List nat_plus: + all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T egyptian: egyptian(q) subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T nat_plus: + so_apply: x[s] int_nzero: -o nequal: a ≠ b ∈  sq_exists: x:A [B[x]] norm-pair: norm-pair(Na;Nb) has-value: (a)↓ sq_type: SQType(T) id-fun: id-fun(T)
Lemmas referenced :  egyptian-number all_wf sq_exists_wf equal_wf qadd_wf qsum_wf qdiv_wf select_wf int_seg_properties length_wf nat_plus_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma subtype_rel_set rationals_wf less_than_wf int-subtype-rationals int_nzero-rational subtype_rel_sets nequal_wf nat_plus_properties intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base int_seg_wf value-type-has-value int-value-type subtype_base_sq list_wf list_subtype_base set_subtype_base norm-list_wf set-value-type id-fun_wf set_wf list-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin instantiate extract_by_obid hypothesis lambdaEquality sqequalHypSubstitution sqequalRule hypothesisEquality introduction isectElimination because_Cache productElimination setElimination rename independent_isectElimination natural_numberEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination setEquality equalityTransitivity equalitySymmetry applyLambdaEquality baseClosed independent_functionElimination callbyvalueReduce cumulativity dependent_set_memberEquality functionExtensionality independent_pairEquality

Latex:
\mforall{}q:\mBbbQ{}.  (egyptian(q)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  (\mBbbN{}\msupplus{}  List)|  let  x,L  =  p  in  q  =  (x  +  \mSigma{}0  \mleq{}  i  <  ||L||.  (1/L[i]))\}  )



Date html generated: 2018_05_22-AM-00_32_54
Last ObjectModification: 2017_07_26-PM-06_59_31

Theory : rationals


Home Index