Nuprl Lemma : egyptian_wf
∀q:ℚ. (egyptian(q) ∈ {p:ℤ × (ℕ+ List)| let x,L = p in q = (x + Σ0 ≤ i < ||L||. (1/L[i])) ∈ ℚ} )
Proof
Definitions occuring in Statement : 
egyptian: egyptian(q)
, 
qsum: Σa ≤ j < b. E[j]
, 
qdiv: (r/s)
, 
qadd: r + s
, 
rationals: ℚ
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
spread: spread def, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
egyptian: egyptian(q)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
sq_exists: ∃x:A [B[x]]
, 
norm-pair: norm-pair(Na;Nb)
, 
has-value: (a)↓
, 
sq_type: SQType(T)
, 
id-fun: id-fun(T)
Lemmas referenced : 
egyptian-number, 
all_wf, 
sq_exists_wf, 
equal_wf, 
qadd_wf, 
qsum_wf, 
qdiv_wf, 
select_wf, 
int_seg_properties, 
length_wf, 
nat_plus_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
subtype_rel_set, 
rationals_wf, 
less_than_wf, 
int-subtype-rationals, 
int_nzero-rational, 
subtype_rel_sets, 
nequal_wf, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
int_seg_wf, 
value-type-has-value, 
int-value-type, 
subtype_base_sq, 
list_wf, 
list_subtype_base, 
set_subtype_base, 
norm-list_wf, 
set-value-type, 
id-fun_wf, 
set_wf, 
list-value-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesisEquality, 
introduction, 
isectElimination, 
because_Cache, 
productElimination, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
baseClosed, 
independent_functionElimination, 
callbyvalueReduce, 
cumulativity, 
dependent_set_memberEquality, 
functionExtensionality, 
independent_pairEquality
Latex:
\mforall{}q:\mBbbQ{}.  (egyptian(q)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  (\mBbbN{}\msupplus{}  List)|  let  x,L  =  p  in  q  =  (x  +  \mSigma{}0  \mleq{}  i  <  ||L||.  (1/L[i]))\}  )
Date html generated:
2018_05_22-AM-00_32_54
Last ObjectModification:
2017_07_26-PM-06_59_31
Theory : rationals
Home
Index