Nuprl Lemma : egyptian-number

q:ℚ(∃p:{ℤ × (ℕ+ List)| let x,L in (x + Σ0 ≤ i < ||L||. (1/L[i])) ∈ ℚ})


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qdiv: (r/s) qadd: s rationals: select: L[n] length: ||as|| list: List nat_plus: + all: x:A. B[x] sq_exists: x:{A| B[x]} spread: spread def product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sq_exists: x:{A| B[x]} prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T nat_plus: + so_apply: x[s] int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  integer-fractional-parts egyptian-fraction fractional-part_wf integer-part_wf equal_wf rationals_wf qadd_wf int-subtype-rationals qsum_wf length_wf nat_plus_wf qdiv_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma subtype_rel_set less_than_wf int_nzero-rational subtype_rel_sets nequal_wf nat_plus_properties set_wf intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base int_seg_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis setElimination rename dependent_set_memberFormation independent_pairEquality productElimination sqequalRule isectElimination applyEquality natural_numberEquality lambdaEquality because_Cache independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination setEquality equalityTransitivity equalitySymmetry baseClosed independent_functionElimination hyp_replacement dependent_set_memberEquality

Latex:
\mforall{}q:\mBbbQ{}.  (\mexists{}p:\{\mBbbZ{}  \mtimes{}  (\mBbbN{}\msupplus{}  List)|  let  x,L  =  p  in  q  =  (x  +  \mSigma{}0  \mleq{}  i  <  ||L||.  (1/L[i]))\})



Date html generated: 2016_10_26-AM-06_48_28
Last ObjectModification: 2016_07_12-AM-08_01_58

Theory : rationals


Home Index