Nuprl Lemma : fractional-part_wf

q:ℚ(fractional-part(q) ∈ {r:ℚ(0 ≤ r) ∧ r < 1} )


Proof




Definitions occuring in Statement :  fractional-part: fractional-part(q) qle: r ≤ s qless: r < s rationals: all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T fractional-part: fractional-part(q) uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B prop: so_apply: x[s] implies:  Q
Lemmas referenced :  set_wf equal_wf qadd_wf int-subtype-rationals pi2_wf rationals_wf qle_wf qless_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule because_Cache thin introduction extract_by_obid sqequalHypSubstitution isectElimination lambdaEquality productEquality productElimination hypothesisEquality applyEquality hypothesis setElimination rename dependent_set_memberEquality intEquality independent_pairEquality independent_pairFormation natural_numberEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}q:\mBbbQ{}.  (fractional-part(q)  \mmember{}  \{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  )



Date html generated: 2018_05_22-AM-00_30_50
Last ObjectModification: 2017_07_26-PM-06_58_39

Theory : rationals


Home Index