Nuprl Lemma : fractional-part_wf
∀q:ℚ. (fractional-part(q) ∈ {r:ℚ| (0 ≤ r) ∧ r < 1} )
Proof
Definitions occuring in Statement : 
fractional-part: fractional-part(q)
, 
qle: r ≤ s
, 
qless: r < s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
fractional-part: fractional-part(q)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
Lemmas referenced : 
set_wf, 
equal_wf, 
qadd_wf, 
int-subtype-rationals, 
pi2_wf, 
rationals_wf, 
qle_wf, 
qless_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
because_Cache, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
lambdaEquality, 
productEquality, 
productElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
intEquality, 
independent_pairEquality, 
independent_pairFormation, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}q:\mBbbQ{}.  (fractional-part(q)  \mmember{}  \{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  )
Date html generated:
2018_05_22-AM-00_30_50
Last ObjectModification:
2017_07_26-PM-06_58_39
Theory : rationals
Home
Index