Nuprl Lemma : egyptian-fraction

r:{r:ℚ(0 ≤ r) ∧ r < 1} (∃L:ℕ+ List [(r = Σ0 ≤ i < ||L||. (1/L[i]) ∈ ℚ)])


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s qless: r < s qdiv: (r/s) rationals: select: L[n] length: ||as|| list: List nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: exists: x:A. B[x] so_lambda: λ2x.t[x] le: A ≤ B uimplies: supposing a guard: {T} int_seg: {i..j-} nat: ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T nat_plus: + so_apply: x[s] int_nzero: -o nequal: a ≠ b ∈  sq_stable: SqStable(P) sq_exists: x:A [B[x]] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_type: SQType(T) true: True iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) less_than': less_than'(a;b) subtract: m cand: c∧ B
Lemmas referenced :  fractional-part-rep qle_wf qless_wf sq_exists_wf list_wf nat_plus_wf equal_wf rationals_wf qsum_wf length_wf qdiv_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma subtype_rel_set less_than_wf int-subtype-rationals int_nzero-rational subtype_rel_sets nequal_wf nat_plus_properties intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base int_seg_wf set_wf squash_wf sq_stable__and sq_stable_from_decidable decidable__qle decidable__qless qless_witness all_wf nat_wf le_wf lelt_wf natrec_wf decidable__equal_int subtype_base_sq nil_wf length_of_nil_lemma true_wf sum_unroll_base_q iff_weakening_equal qmul-preserves-eq qmul_wf qmul_zero_qrng qmul-qdiv-cancel div_rem_sum rem_bounds_1 false_wf not-lt-2 not-equal-2 add_functionality_wrt_le zero-add add-zero le-add-cancel condition-implies-le add-commutes minus-add minus-zero divide_wf less_than_transitivity2 add-is-int-iff multiply-is-int-iff itermMultiply_wf itermAdd_wf int_term_value_mul_lemma int_term_value_add_lemma add_nat_wf mul_preserves_lt subtract_wf itermSubtract_wf int_term_value_subtract_lemma append_wf cons_wf length-append length_of_cons_lemma set_subtype_base length_append subtype_rel_list top_wf length-singleton non_neg_length sum_unroll_hi_q add_nat_plus length_wf_nat nat_plus_subtype_nat int_nzero_wf add-subtract-cancel select_append_back zero-le-nat select-cons-hd not_wf equal-wf-T-base select_append_front qadd_wf qmul-mul qadd-add int-equal-in-rationals qmul_over_plus_qrng qmul_assoc_qrng qmul_comm_qrng qmul_ac_1_qrng qmul-qdiv-cancel3 qmul-qdiv-cancel2 qmul_one_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation setElimination thin rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination productElimination dependent_set_memberEquality hypothesisEquality independent_pairFormation hypothesis productEquality isectElimination natural_numberEquality applyEquality because_Cache sqequalRule hyp_replacement equalitySymmetry applyLambdaEquality lambdaEquality independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination setEquality equalityTransitivity baseClosed independent_functionElimination imageMemberEquality functionEquality functionExtensionality instantiate cumulativity comment dependent_set_memberFormation universeEquality addEquality minusEquality multiplyEquality divideEquality pointwiseFunctionality promote_hyp baseApply closedConclusion addLevel impliesFunctionality

Latex:
\mforall{}r:\{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  .  (\mexists{}L:\mBbbN{}\msupplus{}  List  [(r  =  \mSigma{}0  \mleq{}  i  <  ||L||.  (1/L[i]))])



Date html generated: 2018_05_22-AM-00_32_45
Last ObjectModification: 2017_07_26-PM-06_59_18

Theory : rationals


Home Index