Nuprl Lemma : egyptian-fraction
∀r:{r:ℚ| (0 ≤ r) ∧ r < 1} . (∃L:ℕ+ List [(r = Σ0 ≤ i < ||L||. (1/L[i]) ∈ ℚ)])
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j]
, 
qle: r ≤ s
, 
qless: r < s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
guard: {T}
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
sq_stable: SqStable(P)
, 
sq_exists: ∃x:A [B[x]]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
sq_type: SQType(T)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
cand: A c∧ B
Lemmas referenced : 
fractional-part-rep, 
qle_wf, 
qless_wf, 
sq_exists_wf, 
list_wf, 
nat_plus_wf, 
equal_wf, 
rationals_wf, 
qsum_wf, 
length_wf, 
qdiv_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
subtype_rel_set, 
less_than_wf, 
int-subtype-rationals, 
int_nzero-rational, 
subtype_rel_sets, 
nequal_wf, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
int_seg_wf, 
set_wf, 
squash_wf, 
sq_stable__and, 
sq_stable_from_decidable, 
decidable__qle, 
decidable__qless, 
qless_witness, 
all_wf, 
nat_wf, 
le_wf, 
lelt_wf, 
natrec_wf, 
decidable__equal_int, 
subtype_base_sq, 
nil_wf, 
length_of_nil_lemma, 
true_wf, 
sum_unroll_base_q, 
iff_weakening_equal, 
qmul-preserves-eq, 
qmul_wf, 
qmul_zero_qrng, 
qmul-qdiv-cancel, 
div_rem_sum, 
rem_bounds_1, 
false_wf, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
zero-add, 
add-zero, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
divide_wf, 
less_than_transitivity2, 
add-is-int-iff, 
multiply-is-int-iff, 
itermMultiply_wf, 
itermAdd_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
add_nat_wf, 
mul_preserves_lt, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
append_wf, 
cons_wf, 
length-append, 
length_of_cons_lemma, 
set_subtype_base, 
length_append, 
subtype_rel_list, 
top_wf, 
length-singleton, 
non_neg_length, 
sum_unroll_hi_q, 
add_nat_plus, 
length_wf_nat, 
nat_plus_subtype_nat, 
int_nzero_wf, 
add-subtract-cancel, 
select_append_back, 
zero-le-nat, 
select-cons-hd, 
not_wf, 
equal-wf-T-base, 
select_append_front, 
qadd_wf, 
qmul-mul, 
qadd-add, 
int-equal-in-rationals, 
qmul_over_plus_qrng, 
qmul_assoc_qrng, 
qmul_comm_qrng, 
qmul_ac_1_qrng, 
qmul-qdiv-cancel3, 
qmul-qdiv-cancel2, 
qmul_one_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
productElimination, 
dependent_set_memberEquality, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
productEquality, 
isectElimination, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
lambdaEquality, 
independent_isectElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
setEquality, 
equalityTransitivity, 
baseClosed, 
independent_functionElimination, 
imageMemberEquality, 
functionEquality, 
functionExtensionality, 
instantiate, 
cumulativity, 
comment, 
dependent_set_memberFormation, 
universeEquality, 
addEquality, 
minusEquality, 
multiplyEquality, 
divideEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}r:\{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  .  (\mexists{}L:\mBbbN{}\msupplus{}  List  [(r  =  \mSigma{}0  \mleq{}  i  <  ||L||.  (1/L[i]))])
Date html generated:
2018_05_22-AM-00_32_45
Last ObjectModification:
2017_07_26-PM-06_59_18
Theory : rationals
Home
Index