Nuprl Lemma : fractional-part-rep
∀r:{r:ℚ| (0 ≤ r) ∧ r < 1} . ∃a,b:ℕ. ((0 ≤ a) ∧ a < b ∧ (r = (a/b) ∈ ℚ))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
nat: ℕ
, 
less_than: a < b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
le: A ≤ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
set_wf, 
rationals_wf, 
qle_wf, 
int-subtype-rationals, 
qless_wf, 
squash_wf, 
sq_stable__and, 
sq_stable_from_decidable, 
decidable__qle, 
decidable__qless, 
qless_witness, 
q-elim, 
nat_plus_properties, 
assert-qeq, 
assert_wf, 
qeq_wf2, 
not_wf, 
equal-wf-base, 
int_subtype_base, 
exists_wf, 
nat_wf, 
le_wf, 
less_than_wf, 
equal_wf, 
qdiv_wf, 
subtype_rel_set, 
int_nzero-rational, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
nequal_wf, 
equal-wf-T-base, 
decidable__le, 
qmul_preserves_qle2, 
qle-int, 
qle_witness, 
qmul_wf, 
qmul_preserves_qless, 
qless-int, 
true_wf, 
qmul_zero_qrng, 
qmul-qdiv-cancel, 
iff_weakening_equal, 
qmul_one_qrng, 
equal-wf-base-T, 
qmul-preserves-eq, 
intformnot_wf, 
int_formula_prop_not_lemma, 
int-equal-in-rationals, 
subtype_rel-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
natural_numberEquality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
isect_memberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
addLevel, 
impliesFunctionality, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
intEquality, 
dependent_set_memberEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
baseApply, 
closedConclusion, 
equalityTransitivity, 
unionElimination, 
isect_memberFormation, 
universeEquality, 
minusEquality
Latex:
\mforall{}r:\{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  .  \mexists{}a,b:\mBbbN{}.  ((0  \mleq{}  a)  \mwedge{}  a  <  b  \mwedge{}  (r  =  (a/b)))
Date html generated:
2018_05_22-AM-00_32_29
Last ObjectModification:
2017_07_26-PM-06_59_11
Theory : rationals
Home
Index