Nuprl Lemma : fractional-part-rep

r:{r:ℚ(0 ≤ r) ∧ r < 1} . ∃a,b:ℕ((0 ≤ a) ∧ a < b ∧ (r (a/b) ∈ ℚ))


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qdiv: (r/s) rationals: nat: less_than: a < b le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] implies:  Q sq_stable: SqStable(P) squash: T exists: x:A. B[x] nat_plus: + cand: c∧ B not: ¬A uiff: uiff(P;Q) uimplies: supposing a nat: int_nzero: -o nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top decidable: Dec(P) or: P ∨ Q true: True guard: {T} iff: ⇐⇒ Q le: A ≤ B rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q
Lemmas referenced :  set_wf rationals_wf qle_wf int-subtype-rationals qless_wf squash_wf sq_stable__and sq_stable_from_decidable decidable__qle decidable__qless qless_witness q-elim nat_plus_properties assert-qeq assert_wf qeq_wf2 not_wf equal-wf-base int_subtype_base exists_wf nat_wf le_wf less_than_wf equal_wf qdiv_wf subtype_rel_set int_nzero-rational nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma int_formula_prop_wf nequal_wf equal-wf-T-base decidable__le qmul_preserves_qle2 qle-int qle_witness qmul_wf qmul_preserves_qless qless-int true_wf qmul_zero_qrng qmul-qdiv-cancel iff_weakening_equal qmul_one_qrng equal-wf-base-T qmul-preserves-eq intformnot_wf int_formula_prop_not_lemma int-equal-in-rationals subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation setElimination thin rename cut introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesis sqequalRule lambdaEquality productEquality natural_numberEquality applyEquality hypothesisEquality because_Cache isect_memberEquality independent_functionElimination dependent_functionElimination imageMemberEquality baseClosed imageElimination productElimination addLevel impliesFunctionality independent_isectElimination hyp_replacement equalitySymmetry applyLambdaEquality intEquality dependent_set_memberEquality dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp baseApply closedConclusion equalityTransitivity unionElimination isect_memberFormation universeEquality minusEquality

Latex:
\mforall{}r:\{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  .  \mexists{}a,b:\mBbbN{}.  ((0  \mleq{}  a)  \mwedge{}  a  <  b  \mwedge{}  (r  =  (a/b)))



Date html generated: 2018_05_22-AM-00_32_29
Last ObjectModification: 2017_07_26-PM-06_59_11

Theory : rationals


Home Index