Nuprl Lemma : integer-part_wf

q:ℚ(integer-part(q) ∈ ℤ)


Proof




Definitions occuring in Statement :  integer-part: integer-part(q) rationals: all: x:A. B[x] member: t ∈ T int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T integer-part: integer-part(q) uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B prop: so_apply: x[s] implies:  Q uimplies: supposing a top: Top
Lemmas referenced :  set_wf equal_wf qadd_wf int-subtype-rationals pi1_wf_top subtype_rel_product rationals_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule because_Cache thin introduction extract_by_obid sqequalHypSubstitution isectElimination lambdaEquality productEquality productElimination hypothesisEquality applyEquality hypothesis intEquality setElimination rename independent_isectElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}q:\mBbbQ{}.  (integer-part(q)  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_22-AM-00_30_42
Last ObjectModification: 2017_07_26-PM-06_58_33

Theory : rationals


Home Index