Nuprl Lemma : integer-fractional-parts

q:ℚ(q (integer-part(q) fractional-part(q)) ∈ ℚ)


Proof




Definitions occuring in Statement :  fractional-part: fractional-part(q) integer-part: integer-part(q) qadd: s rationals: all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] fractional-part: fractional-part(q) integer-part: integer-part(q) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B pi2: snd(t) prop: pi1: fst(t) so_apply: x[s] implies:  Q
Lemmas referenced :  int_part_decomp_wf set_wf rationals_wf qle_wf qless_wf equal_wf qadd_wf int-subtype-rationals
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productEquality intEquality sqequalRule lambdaEquality natural_numberEquality applyEquality because_Cache productElimination setElimination rename equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}q:\mBbbQ{}.  (q  =  (integer-part(q)  +  fractional-part(q)))



Date html generated: 2018_05_22-AM-00_30_56
Last ObjectModification: 2017_07_26-PM-06_58_46

Theory : rationals


Home Index