Nuprl Lemma : integer-fractional-parts
∀q:ℚ. (q = (integer-part(q) + fractional-part(q)) ∈ ℚ)
Proof
Definitions occuring in Statement : 
fractional-part: fractional-part(q)
, 
integer-part: integer-part(q)
, 
qadd: r + s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
fractional-part: fractional-part(q)
, 
integer-part: integer-part(q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
pi2: snd(t)
, 
prop: ℙ
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
Lemmas referenced : 
int_part_decomp_wf, 
set_wf, 
rationals_wf, 
qle_wf, 
qless_wf, 
equal_wf, 
qadd_wf, 
int-subtype-rationals
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productEquality, 
intEquality, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
productElimination, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}q:\mBbbQ{}.  (q  =  (integer-part(q)  +  fractional-part(q)))
Date html generated:
2018_05_22-AM-00_30_56
Last ObjectModification:
2017_07_26-PM-06_58_46
Theory : rationals
Home
Index