Nuprl Lemma : int_part_decomp_wf
∀[q:ℚ]. (int_part_decomp(q) ∈ {p:ℤ × ℚ| (0 ≤ (snd(p))) ∧ snd(p) < 1 ∧ (q = ((fst(p)) + (snd(p))) ∈ ℚ)} )
Proof
Definitions occuring in Statement : 
int_part_decomp: int_part_decomp(q)
, 
qle: r ≤ s
, 
qless: r < s
, 
qadd: r + s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_part_decomp: int_part_decomp(q)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cand: A c∧ B
Lemmas referenced : 
rat-int-part_wf2, 
set_wf, 
rationals_wf, 
qle_wf, 
qless_wf, 
equal_wf, 
qadd_wf, 
int-subtype-rationals
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
productEquality, 
intEquality, 
setEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
spreadEquality, 
productElimination, 
independent_pairEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
lambdaFormation, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[q:\mBbbQ{}].  (int\_part\_decomp(q)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbQ{}|  (0  \mleq{}  (snd(p)))  \mwedge{}  snd(p)  <  1  \mwedge{}  (q  =  ((fst(p))  +  (snd(p))))\}  )
Date html generated:
2018_05_22-AM-00_30_35
Last ObjectModification:
2017_07_26-PM-06_58_26
Theory : rationals
Home
Index