Nuprl Lemma : int_part_decomp_wf

[q:ℚ]. (int_part_decomp(q) ∈ {p:ℤ × ℚ(0 ≤ (snd(p))) ∧ snd(p) < 1 ∧ (q ((fst(p)) (snd(p))) ∈ ℚ)} )


Proof




Definitions occuring in Statement :  int_part_decomp: int_part_decomp(q) qle: r ≤ s qless: r < s qadd: s rationals: uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_part_decomp: int_part_decomp(q) all: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q pi2: snd(t) pi1: fst(t) cand: c∧ B
Lemmas referenced :  rat-int-part_wf2 set_wf rationals_wf qle_wf qless_wf equal_wf qadd_wf int-subtype-rationals
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination productEquality intEquality setEquality natural_numberEquality applyEquality because_Cache lambdaEquality spreadEquality productElimination independent_pairEquality setElimination rename dependent_set_memberEquality lambdaFormation independent_pairFormation equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality

Latex:
\mforall{}[q:\mBbbQ{}].  (int\_part\_decomp(q)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbQ{}|  (0  \mleq{}  (snd(p)))  \mwedge{}  snd(p)  <  1  \mwedge{}  (q  =  ((fst(p))  +  (snd(p))))\}  )



Date html generated: 2018_05_22-AM-00_30_35
Last ObjectModification: 2017_07_26-PM-06_58_26

Theory : rationals


Home Index