Nuprl Lemma : rat-int-part_wf2

q:ℚ(rat-int-part(q) ∈ {p:ℤ × {r:ℚ(0 ≤ r) ∧ r < 1} let x,r in (x r) ∈ ℚ)


Proof




Definitions occuring in Statement :  rat-int-part: rat-int-part(q) qle: r ≤ s qless: r < s qadd: s rationals: all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] rationals: member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: quotient: x,y:A//B[x; y] so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_apply: x[s] implies:  Q decidable: Dec(P) or: P ∨ Q cand: c∧ B uiff: uiff(P;Q) guard: {T} rev_uimplies: rev_uimplies(P;Q) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q false: False satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top sq_type: SQType(T)
Lemmas referenced :  rationals_wf qle_wf int-subtype-rationals qless_wf equal_wf qadd_wf equal-wf-base b-union_wf int_nzero_wf equal-wf-T-base bool_wf qeq_wf rat-int-part_wf set_wf subtype_quotient qeq-equiv quotient-member-eq spread_wf decidable__le qle-int qadd-add qadd_preserves_qless qmul_wf squash_wf true_wf qadd_ac_1_q qadd_comm_q qadd_inv_assoc_q qinverse_q mon_ident_q iff_weakening_equal qadd_preserves_qle qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution pointwiseFunctionalityForEquality setEquality productEquality intEquality thin cut introduction extract_by_obid hypothesis isectElimination natural_numberEquality applyEquality sqequalRule hypothesisEquality because_Cache spreadEquality productElimination independent_pairEquality setElimination rename dependent_set_memberEquality pertypeElimination baseClosed dependent_functionElimination lambdaEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination instantiate cumulativity universeEquality addEquality unionElimination independent_pairFormation minusEquality imageElimination imageMemberEquality voidElimination dependent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll applyLambdaEquality

Latex:
\mforall{}q:\mBbbQ{}.  (rat-int-part(q)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  |  let  x,r  =  p  in  q  =  (x  +  r)\}  )



Date html generated: 2018_05_22-AM-00_27_46
Last ObjectModification: 2017_07_26-PM-06_56_48

Theory : rationals


Home Index