Nuprl Lemma : rat-int-part_wf2
∀q:ℚ. (rat-int-part(q) ∈ {p:ℤ × {r:ℚ| (0 ≤ r) ∧ r < 1} | let x,r = p in q = (x + r) ∈ ℚ} )
Proof
Definitions occuring in Statement : 
rat-int-part: rat-int-part(q)
, 
qle: r ≤ s
, 
qless: r < s
, 
qadd: r + s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
spread: spread def, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
rationals: ℚ
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
sq_type: SQType(T)
Lemmas referenced : 
rationals_wf, 
qle_wf, 
int-subtype-rationals, 
qless_wf, 
equal_wf, 
qadd_wf, 
equal-wf-base, 
b-union_wf, 
int_nzero_wf, 
equal-wf-T-base, 
bool_wf, 
qeq_wf, 
rat-int-part_wf, 
set_wf, 
subtype_quotient, 
qeq-equiv, 
quotient-member-eq, 
spread_wf, 
decidable__le, 
qle-int, 
qadd-add, 
qadd_preserves_qless, 
qmul_wf, 
squash_wf, 
true_wf, 
qadd_ac_1_q, 
qadd_comm_q, 
qadd_inv_assoc_q, 
qinverse_q, 
mon_ident_q, 
iff_weakening_equal, 
qadd_preserves_qle, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
intformle_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
setEquality, 
productEquality, 
intEquality, 
thin, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
hypothesisEquality, 
because_Cache, 
spreadEquality, 
productElimination, 
independent_pairEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
pertypeElimination, 
baseClosed, 
dependent_functionElimination, 
lambdaEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
instantiate, 
cumulativity, 
universeEquality, 
addEquality, 
unionElimination, 
independent_pairFormation, 
minusEquality, 
imageElimination, 
imageMemberEquality, 
voidElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
applyLambdaEquality
Latex:
\mforall{}q:\mBbbQ{}.  (rat-int-part(q)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  |  let  x,r  =  p  in  q  =  (x  +  r)\}  )
Date html generated:
2018_05_22-AM-00_27_46
Last ObjectModification:
2017_07_26-PM-06_56_48
Theory : rationals
Home
Index