Nuprl Lemma : rat-int-part_wf

q:ℤ ⋃ (ℤ × ℤ-o). (rat-int-part(q) ∈ {p:ℤ × {r:ℚ(0 ≤ r) ∧ r < 1} let x,r in (x r) ∈ ℚ)


Proof




Definitions occuring in Statement :  rat-int-part: rat-int-part(q) qle: r ≤ s qless: r < s qadd: s rationals: int_nzero: -o b-union: A ⋃ B all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rat-int-part: rat-int-part(q) uall: [x:A]. B[x] b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uiff: uiff(P;Q) uimplies: supposing a less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: qdiv: (r/s) qinv: 1/r qmul: s callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) btrue: tt int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q top: Top sq_type: SQType(T) guard: {T} bfalse: ff nequal: a ≠ b ∈  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False it: or: P ∨ Q bnot: ¬bb assert: b rev_uimplies: rev_uimplies(P;Q) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q nat: nat_plus: + le: A ≤ B int_lower: {...i} gt: i > j ge: i ≥ 
Lemmas referenced :  b-union_wf int_nzero_wf qle_reflexivity int-subtype-rationals qless-int qle_wf qless_wf mon_ident_q equal-wf-base-T rationals_wf int_subtype_base qadd_wf valueall-type-has-valueall int-valueall-type evalall-reduce set-valueall-type nequal_wf product-valueall-type evalall-sqequal set_subtype_base subtype_base_sq product_subtype_base mul-commutes one-mul div_rem_sum int_nzero_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf equal-wf-base value-type-has-value int-value-type eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int qmul-preserves-eq qdiv_wf qmul_wf subtype_rel_set int_nzero-rational qmul-mul int-equal-in-rationals decidable__equal_int itermMultiply_wf itermAdd_wf int_term_value_mul_lemma int_term_value_add_lemma squash_wf true_wf qmul_over_plus_qrng qmul_zero_qrng qmul_comm_qrng qadd_comm_q qmul-qdiv-cancel iff_weakening_equal lt_int_wf assert_of_lt_int le_int_wf assert_of_le_int le_wf less_than_wf rem_bounds_1 qdiv-non-neg1 qle-int decidable__le intformle_wf int_formula_prop_le_lemma qmul_preserves_qless decidable__lt intformless_wf int_formula_prop_less_lemma qmul_one_qrng qadd-add rem_bounds_2 subtract_wf itermMinus_wf int_term_value_minus_lemma itermSubtract_wf int_term_value_subtract_lemma rem_bounds_4 qmul_preserves_qle qmul_over_minus_qrng rem_bounds_3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid isectElimination thin intEquality productEquality imageElimination productElimination unionElimination equalityElimination sqequalRule isintReduceTrue hypothesisEquality dependent_set_memberEquality independent_pairEquality natural_numberEquality applyEquality independent_pairFormation independent_isectElimination imageMemberEquality baseClosed because_Cache equalitySymmetry spreadEquality setElimination rename callbyvalueReduce lambdaEquality independent_functionElimination baseApply closedConclusion instantiate cumulativity isect_memberEquality voidElimination voidEquality dependent_functionElimination equalityTransitivity remainderEquality dependent_pairFormation int_eqEquality computeAll divideEquality promote_hyp addEquality multiplyEquality universeEquality minusEquality

Latex:
\mforall{}q:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{}).  (rat-int-part(q)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \{r:\mBbbQ{}|  (0  \mleq{}  r)  \mwedge{}  r  <  1\}  |  let  x,r  =  p  in  q  =  (x  +  r)\}  )



Date html generated: 2018_05_22-AM-00_27_34
Last ObjectModification: 2017_07_26-PM-06_56_42

Theory : rationals


Home Index