Nuprl Lemma : qdiv-non-neg1

[a,b:ℚ].  0 ≤ (a/b) supposing 0 < b ∧ (0 ≤ a)


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qdiv: (r/s) rationals: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B not: ¬A implies:  Q guard: {T} false: False prop: true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  iff_weakening_equal qmul-qdiv-cancel qmul_zero_qrng true_wf squash_wf qmul_wf qle_wf qless_wf and_wf rationals_wf equal_wf qless_irreflexivity qle_weakening_eq_qorder qless_transitivity_2_qorder int-subtype-rationals qle_witness qdiv_wf qmul_preserves_qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination because_Cache independent_isectElimination hypothesis natural_numberEquality applyEquality sqequalRule lambdaFormation hypothesisEquality voidElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[a,b:\mBbbQ{}].    0  \mleq{}  (a/b)  supposing  0  <  b  \mwedge{}  (0  \mleq{}  a)



Date html generated: 2016_05_15-PM-11_05_04
Last ObjectModification: 2016_01_16-PM-09_28_00

Theory : rationals


Home Index