Step
*
1
1
2
of Lemma
equipollent-nat-rationals
1. L : (ℤ × ℕ+) List
2. 0 < ||[1 / map(λp.(snd(p));L)]||
3. 0 ≤ imax-list([1 / map(λp.(snd(p));L)])
4. ↑is-qrep(<1, imax-list([1 / map(λp.(snd(p));L)]) + 1>)
⊢ ¬(<1, imax-list([1 / map(λp.(snd(p));L)]) + 1> ∈ L)
BY
{ ((D 0 THEN Auto) THEN RepeatFor 2 (D -1)) }
1
1. L : (ℤ × ℕ+) List
2. 0 < ||[1 / map(λp.(snd(p));L)]||
3. 0 ≤ imax-list([1 / map(λp.(snd(p));L)])
4. ↑is-qrep(<1, imax-list([1 / map(λp.(snd(p));L)]) + 1>)
5. i : ℕ
6. i < ||L||
7. <1, imax-list([1 / map(λp.(snd(p));L)]) + 1> = L[i] ∈ (ℤ × ℕ+)
⊢ False
Latex:
Latex:
1.  L  :  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})  List
2.  0  <  ||[1  /  map(\mlambda{}p.(snd(p));L)]||
3.  0  \mleq{}  imax-list([1  /  map(\mlambda{}p.(snd(p));L)])
4.  \muparrow{}is-qrep(ə,  imax-list([1  /  map(\mlambda{}p.(snd(p));L)])  +  1>)
\mvdash{}  \mneg{}(ə,  imax-list([1  /  map(\mlambda{}p.(snd(p));L)])  +  1>  \mmember{}  L)
By
Latex:
((D  0  THEN  Auto)  THEN  RepeatFor  2  (D  -1))
Home
Index