Nuprl Lemma : equipollent-nat-rationals
(our proof is constructive so we can compute the listing of rationals
       see first-25-rationals)⋅
ℕ ~ ℚ
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
equipollent: A ~ B
, 
nat: ℕ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
subtract: n - m
, 
pi2: snd(t)
, 
cons: [a / b]
, 
select: L[n]
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
l_exists: (∃x∈L. P[x])
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
false: False
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
guard: {T}
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
top: Top
, 
is-qrep: is-qrep(p)
, 
has-value: (a)↓
, 
nat: ℕ
, 
bfalse: ff
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
, 
l_member: (x ∈ l)
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
equipollent: A ~ B
, 
surject: Surj(A;B;f)
, 
inject: Inj(A;B;f)
, 
biject: Bij(A;B;f)
Lemmas referenced : 
equipollent_functionality_wrt_equipollent2, 
nat_wf, 
rationals_wf, 
nat_plus_wf, 
assert_wf, 
is-qrep_wf, 
equipollent-rationals-ext, 
equipollent-nat-subset-ext, 
decidable__assert, 
list_wf, 
l_member_wf, 
not_wf, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
imax-list_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
int_seg_properties, 
select_wf, 
le_wf, 
length_wf, 
lelt_wf, 
pi2_wf, 
map_wf, 
cons_wf, 
imax-list-ub, 
equal_wf, 
false_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
add-is-int-iff, 
decidable__lt, 
nat_plus_properties, 
less_than_wf, 
length_wf_nat, 
add_nat_plus, 
length-map, 
length_of_cons_lemma, 
better-gcd-gcd, 
assert_of_eq_int, 
assert_of_bor, 
iff_weakening_uiff, 
iff_transitivity, 
int_subtype_base, 
equal-wf-base, 
or_wf, 
eq_int_wf, 
bor_wf, 
gcd_wf, 
int-value-type, 
value-type-has-value, 
assoced_weakening, 
absval_assoced, 
assoced_functionality_wrt_assoced, 
one_divs_any, 
divides-iff-gcd-assoced, 
absval_wf, 
assoced_nelim, 
assert_of_bnot, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
int_term_value_minus_lemma, 
itermMinus_wf, 
minus-is-int-iff, 
bnot_wf, 
decidable__equal_int, 
lt_int_wf, 
absval_ifthenelse, 
and_wf, 
nat_properties, 
select_member, 
member_map, 
l_exists_iff, 
equal-wf-T-base, 
cons_member, 
ext-eq_weakening, 
equipollent_weakening_ext-eq, 
equipollent-nat-squared, 
equipollent_functionality_wrt_equipollent, 
equipollent-int-nat, 
product_functionality_wrt_equipollent_left, 
int_upper_wf, 
biject_wf, 
subtype_rel_sets, 
int_upper_properties, 
product_functionality_wrt_equipollent_right, 
equipollent-int_upper-nat, 
equipollent-product-com
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
setEquality, 
productEquality, 
intEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
lambdaFormation, 
because_Cache, 
minusEquality, 
imageElimination, 
addEquality, 
applyEquality, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
independent_isectElimination, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
unionElimination, 
rename, 
setElimination, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
orFunctionality, 
callbyvalueReduce, 
impliesFunctionality, 
cumulativity, 
instantiate, 
inrFormation, 
inlFormation, 
functionExtensionality
Latex:
\mBbbN{}  \msim{}  \mBbbQ{}
Date html generated:
2018_05_21-PM-11_49_10
Last ObjectModification:
2017_08_09-PM-06_59_20
Theory : rationals
Home
Index