Nuprl Lemma : equipollent-nat-rationals

(our proof is constructive so we can compute the listing of rationals
       see first-25-rationals)⋅

ℕ ~ ℚ


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  rationals: equipollent: B nat:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] prop: implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B subtract: m pi2: snd(t) cons: [a b] select: L[n] le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} l_exists: (∃x∈L. P[x]) subtype_rel: A ⊆B exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a uiff: uiff(P;Q) false: False or: P ∨ Q decidable: Dec(P) guard: {T} true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + top: Top is-qrep: is-qrep(p) has-value: (a)↓ nat: bfalse: ff btrue: tt ifthenelse: if then else fi  sq_type: SQType(T) l_member: (x ∈ l) ge: i ≥  int_upper: {i...} equipollent: B surject: Surj(A;B;f) inject: Inj(A;B;f) biject: Bij(A;B;f)
Lemmas referenced :  equipollent_functionality_wrt_equipollent2 nat_wf rationals_wf nat_plus_wf assert_wf is-qrep_wf equipollent-rationals-ext equipollent-nat-subset-ext decidable__assert list_wf l_member_wf not_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 imax-list_wf int_formula_prop_le_lemma intformle_wf decidable__le int_seg_properties select_wf le_wf length_wf lelt_wf pi2_wf map_wf cons_wf imax-list-ub equal_wf false_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat add-is-int-iff decidable__lt nat_plus_properties less_than_wf length_wf_nat add_nat_plus length-map length_of_cons_lemma better-gcd-gcd assert_of_eq_int assert_of_bor iff_weakening_uiff iff_transitivity int_subtype_base equal-wf-base or_wf eq_int_wf bor_wf gcd_wf int-value-type value-type-has-value assoced_weakening absval_assoced assoced_functionality_wrt_assoced one_divs_any divides-iff-gcd-assoced absval_wf assoced_nelim assert_of_bnot eqff_to_assert assert_of_lt_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases int_term_value_minus_lemma itermMinus_wf minus-is-int-iff bnot_wf decidable__equal_int lt_int_wf absval_ifthenelse and_wf nat_properties select_member member_map l_exists_iff equal-wf-T-base cons_member ext-eq_weakening equipollent_weakening_ext-eq equipollent-nat-squared equipollent_functionality_wrt_equipollent equipollent-int-nat product_functionality_wrt_equipollent_left int_upper_wf biject_wf subtype_rel_sets int_upper_properties product_functionality_wrt_equipollent_right equipollent-int_upper-nat equipollent-product-com
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis setEquality productEquality intEquality dependent_functionElimination productElimination independent_pairEquality hypothesisEquality independent_functionElimination sqequalRule lambdaEquality lambdaFormation because_Cache minusEquality imageElimination addEquality applyEquality int_eqEquality dependent_pairFormation approximateComputation independent_isectElimination closedConclusion baseApply promote_hyp pointwiseFunctionality unionElimination rename setElimination applyLambdaEquality equalitySymmetry equalityTransitivity baseClosed imageMemberEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality orFunctionality callbyvalueReduce impliesFunctionality cumulativity instantiate inrFormation inlFormation functionExtensionality

Latex:
\mBbbN{}  \msim{}  \mBbbQ{}



Date html generated: 2018_05_21-PM-11_49_10
Last ObjectModification: 2017_08_09-PM-06_59_20

Theory : rationals


Home Index