Nuprl Lemma : is-qrep_wf
∀p:ℤ × ℕ+. (is-qrep(p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
is-qrep: is-qrep(p)
, 
nat_plus: ℕ+
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
is-qrep: is-qrep(p)
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
better-gcd_wf, 
bor_wf, 
eq_int_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
productElimination, 
thin, 
callbyvalueReduce, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
natural_numberEquality, 
minusEquality, 
productEquality
Latex:
\mforall{}p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  (is-qrep(p)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-10_40_04
Last ObjectModification:
2015_12_27-PM-07_58_37
Theory : rationals
Home
Index