Nuprl Lemma : is-qrep_wf

p:ℤ × ℕ+(is-qrep(p) ∈ 𝔹)


Proof




Definitions occuring in Statement :  is-qrep: is-qrep(p) nat_plus: + bool: 𝔹 all: x:A. B[x] member: t ∈ T product: x:A × B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T is-qrep: is-qrep(p) has-value: (a)↓ uall: [x:A]. B[x] uimplies: supposing a nat_plus: +
Lemmas referenced :  value-type-has-value int-value-type better-gcd_wf bor_wf eq_int_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule productElimination thin callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination intEquality independent_isectElimination hypothesis hypothesisEquality setElimination rename natural_numberEquality minusEquality productEquality

Latex:
\mforall{}p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  (is-qrep(p)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-10_40_04
Last ObjectModification: 2015_12_27-PM-07_58_37

Theory : rationals


Home Index