Nuprl Lemma : divides-iff-gcd-assoced
∀x,y:ℤ.  (x | y 
⇐⇒ gcd(x;y) ~ x)
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
divides: b | a
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
assoced: a ~ b
Lemmas referenced : 
divides_wf, 
assoced_wf, 
gcd_wf, 
divides-iff-gcd, 
assoced_functionality_wrt_assoced, 
gcd_sym, 
assoced_weakening, 
gcd_is_divisor_2, 
divides_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
intEquality, 
productElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}x,y:\mBbbZ{}.    (x  |  y  \mLeftarrow{}{}\mRightarrow{}  gcd(x;y)  \msim{}  x)
Date html generated:
2018_05_21-PM-01_10_28
Last ObjectModification:
2018_01_28-PM-02_03_50
Theory : num_thy_1
Home
Index