Nuprl Lemma : gcd_sym

a,b:ℤ.  (gcd(a;b) gcd(b;a))


Proof




Definitions occuring in Statement :  assoced: b gcd: gcd(a;b) all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q implies:  Q guard: {T} uimplies: supposing a
Lemmas referenced :  istype-int gcd_elim gcd_p_sym gcd_unique gcd_wf assoced_transitivity assoced_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :inhabitedIsType,  hypothesisEquality cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin because_Cache productElimination independent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}a,b:\mBbbZ{}.    (gcd(a;b)  \msim{}  gcd(b;a))



Date html generated: 2019_06_20-PM-02_21_59
Last ObjectModification: 2018_10_03-AM-00_12_18

Theory : num_thy_1


Home Index