Nuprl Lemma : gcd_sym
∀a,b:ℤ.  (gcd(a;b) ~ gcd(b;a))
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
istype-int, 
gcd_elim, 
gcd_p_sym, 
gcd_unique, 
gcd_wf, 
assoced_transitivity, 
assoced_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :inhabitedIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
productElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}a,b:\mBbbZ{}.    (gcd(a;b)  \msim{}  gcd(b;a))
Date html generated:
2019_06_20-PM-02_21_59
Last ObjectModification:
2018_10_03-AM-00_12_18
Theory : num_thy_1
Home
Index