Nuprl Lemma : gcd_elim
∀a,b:ℤ.  ∃y:ℤ. (GCD(a;b;y) ∧ (gcd(a;b) = y ∈ ℤ))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
istype-int, 
gcd_wf, 
gcd_sat_pred, 
gcd_p_wf, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :inhabitedIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
Error :dependent_pairFormation_alt, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
independent_pairFormation, 
because_Cache, 
sqequalRule, 
Error :productIsType, 
Error :universeIsType, 
isectElimination, 
Error :equalityIsType4, 
applyEquality
Latex:
\mforall{}a,b:\mBbbZ{}.    \mexists{}y:\mBbbZ{}.  (GCD(a;b;y)  \mwedge{}  (gcd(a;b)  =  y))
Date html generated:
2019_06_20-PM-02_21_57
Last ObjectModification:
2018_10_03-AM-00_12_19
Theory : num_thy_1
Home
Index