Nuprl Lemma : gcd_elim

a,b:ℤ.  ∃y:ℤ(GCD(a;b;y) ∧ (gcd(a;b) y ∈ ℤ))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) gcd: gcd(a;b) all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] prop: subtype_rel: A ⊆B
Lemmas referenced :  istype-int gcd_wf gcd_sat_pred gcd_p_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :inhabitedIsType,  hypothesisEquality cut introduction extract_by_obid hypothesis Error :dependent_pairFormation_alt,  sqequalHypSubstitution dependent_functionElimination thin independent_pairFormation because_Cache sqequalRule Error :productIsType,  Error :universeIsType,  isectElimination Error :equalityIsType4,  applyEquality

Latex:
\mforall{}a,b:\mBbbZ{}.    \mexists{}y:\mBbbZ{}.  (GCD(a;b;y)  \mwedge{}  (gcd(a;b)  =  y))



Date html generated: 2019_06_20-PM-02_21_57
Last ObjectModification: 2018_10_03-AM-00_12_19

Theory : num_thy_1


Home Index