Nuprl Lemma : equipollent-int_upper-nat

k:ℤ{k...} ~ ℕ


Proof




Definitions occuring in Statement :  equipollent: B int_upper: {i...} nat: all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T nat: uall: [x:A]. B[x] int_upper: {i...} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: biject: Bij(A;B;f) inject: Inj(A;B;f) guard: {T} ge: i ≥  surject: Surj(A;B;f)
Lemmas referenced :  add-subtract-cancel int_term_value_add_lemma itermAdd_wf biject_wf nat_wf equal_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int nat_properties int_upper_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_upper_properties subtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation lambdaEquality dependent_set_memberEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll equalityTransitivity equalitySymmetry applyEquality setEquality because_Cache addEquality

Latex:
\mforall{}k:\mBbbZ{}.  \{k...\}  \msim{}  \mBbbN{}



Date html generated: 2016_05_15-PM-05_25_41
Last ObjectModification: 2016_01_16-PM-00_26_56

Theory : general


Home Index