Nuprl Lemma : equipollent-int_upper-nat
∀k:ℤ. {k...} ~ ℕ
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
int_upper: {i...}, 
nat: ℕ, 
all: ∀x:A. B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
equipollent: A ~ B, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
biject: Bij(A;B;f), 
inject: Inj(A;B;f), 
guard: {T}, 
ge: i ≥ j , 
surject: Surj(A;B;f)
Lemmas referenced : 
add-subtract-cancel, 
int_term_value_add_lemma, 
itermAdd_wf, 
biject_wf, 
nat_wf, 
equal_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
nat_properties, 
int_upper_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_upper_properties, 
subtract_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
dependent_set_memberEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
setEquality, 
because_Cache, 
addEquality
Latex:
\mforall{}k:\mBbbZ{}.  \{k...\}  \msim{}  \mBbbN{}
Date html generated:
2016_05_15-PM-05_25_41
Last ObjectModification:
2016_01_16-PM-00_26_56
Theory : general
Home
Index