Nuprl Lemma : first-25-rationals

map(λn.nth-rational(n);upto(25))
[0;
   -1;
   1;
   (-1/2);
   -2;
   (1/2);
   (-1/3);
   2;
   (1/3);
   (-1/4);
   -3;
   (-2/3);
   (1/4);
   (-1/5);
   3;
   (-3/2);
   (2/3);
   (1/5);
   (-1/6);
   -4;
   (3/2);
   (-2/5);
   (1/6);
   (-1/7);
   4]
∈ (ℚ List)


Proof




Definitions occuring in Statement :  nth-rational: nth-rational(n) qdiv: (r/s) rationals: upto: upto(n) map: map(f;as) cons: [a b] nil: [] list: List lambda: λx.A[x] minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  upto: upto(n) from-upto: [n, m) lt_int: i <j ifthenelse: if then else fi  btrue: tt all: x:A. B[x] member: t ∈ T top: Top bfalse: ff squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] true: True
Lemmas referenced :  map_cons_lemma map_nil_lemma cons_wf squash_wf true_wf list_wf rationals_wf assert-qeq int-subtype-rationals nth-rational_wf false_wf le_wf eqtt_to_assert qeq_wf2 btrue_wf qdiv_wf satisfiable-full-omega-tt intformeq_wf itermConstant_wf int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf equal-wf-base int-equal-in-rationals not_wf nil_wf
Rules used in proof :  equalitySymmetry sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule callbyvalueReduce sqleReflexivity cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis applyEquality lambdaEquality imageElimination isectElimination hypothesisEquality equalityTransitivity universeEquality natural_numberEquality dependent_set_memberEquality independent_pairFormation lambdaFormation productElimination independent_isectElimination because_Cache computeAll minusEquality intEquality dependent_pairFormation baseClosed addLevel impliesFunctionality imageMemberEquality

Latex:
map(\mlambda{}n.nth-rational(n);upto(25))
=  [0;
      -1;
      1;
      (-1/2);
      -2;
      (1/2);
      (-1/3);
      2;
      (1/3);
      (-1/4);
      -3;
      (-2/3);
      (1/4);
      (-1/5);
      3;
      (-3/2);
      (2/3);
      (1/5);
      (-1/6);
      -4;
      (3/2);
      (-2/5);
      (1/6);
      (-1/7);
      4]



Date html generated: 2018_05_21-PM-11_49_21
Last ObjectModification: 2017_07_26-PM-06_43_18

Theory : rationals


Home Index