Nuprl Lemma : first-25-rationals
map(λn.nth-rational(n);upto(25))
= [0;
   -1;
   1;
   (-1/2);
   -2;
   (1/2);
   (-1/3);
   2;
   (1/3);
   (-1/4);
   -3;
   (-2/3);
   (1/4);
   (-1/5);
   3;
   (-3/2);
   (2/3);
   (1/5);
   (-1/6);
   -4;
   (3/2);
   (-2/5);
   (1/6);
   (-1/7);
   4]
∈ (ℚ List)
Proof
Definitions occuring in Statement : 
nth-rational: nth-rational(n)
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
upto: upto(n)
, 
map: map(f;as)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
lambda: λx.A[x]
, 
minus: -n
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
upto: upto(n)
, 
from-upto: [n, m)
, 
lt_int: i <z j
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
bfalse: ff
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
true: True
Lemmas referenced : 
map_cons_lemma, 
map_nil_lemma, 
cons_wf, 
squash_wf, 
true_wf, 
list_wf, 
rationals_wf, 
assert-qeq, 
int-subtype-rationals, 
nth-rational_wf, 
false_wf, 
le_wf, 
eqtt_to_assert, 
qeq_wf2, 
btrue_wf, 
qdiv_wf, 
satisfiable-full-omega-tt, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int-equal-in-rationals, 
not_wf, 
nil_wf
Rules used in proof : 
equalitySymmetry, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
callbyvalueReduce, 
sqleReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
imageElimination, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation, 
productElimination, 
independent_isectElimination, 
because_Cache, 
computeAll, 
minusEquality, 
intEquality, 
dependent_pairFormation, 
baseClosed, 
addLevel, 
impliesFunctionality, 
imageMemberEquality
Latex:
map(\mlambda{}n.nth-rational(n);upto(25))
=  [0;
      -1;
      1;
      (-1/2);
      -2;
      (1/2);
      (-1/3);
      2;
      (1/3);
      (-1/4);
      -3;
      (-2/3);
      (1/4);
      (-1/5);
      3;
      (-3/2);
      (2/3);
      (1/5);
      (-1/6);
      -4;
      (3/2);
      (-2/5);
      (1/6);
      (-1/7);
      4]
Date html generated:
2018_05_21-PM-11_49_21
Last ObjectModification:
2017_07_26-PM-06_43_18
Theory : rationals
Home
Index