Nuprl Lemma : nth-rational_wf

[n:ℕ]. (nth-rational(n) ∈ ℚ)


Proof




Definitions occuring in Statement :  nth-rational: nth-rational(n) rationals: nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nth-rational: nth-rational(n) all: x:A. B[x] implies:  Q equipollent: B exists: x:A. B[x] pi1: fst(t) prop:
Lemmas referenced :  equipollent-nat-rationals-ext equipollent_wf nat_wf rationals_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate extract_by_obid hypothesis sqequalHypSubstitution isectElimination lambdaFormation productElimination applyEquality functionExtensionality hypothesisEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  (nth-rational(n)  \mmember{}  \mBbbQ{})



Date html generated: 2018_05_21-PM-11_49_17
Last ObjectModification: 2017_07_26-PM-06_43_16

Theory : rationals


Home Index