Nuprl Lemma : nth-rational_wf
∀[n:ℕ]. (nth-rational(n) ∈ ℚ)
Proof
Definitions occuring in Statement : 
nth-rational: nth-rational(n)
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nth-rational: nth-rational(n)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
, 
prop: ℙ
Lemmas referenced : 
equipollent-nat-rationals-ext, 
equipollent_wf, 
nat_wf, 
rationals_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
lambdaFormation, 
productElimination, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}].  (nth-rational(n)  \mmember{}  \mBbbQ{})
Date html generated:
2018_05_21-PM-11_49_17
Last ObjectModification:
2017_07_26-PM-06_43_16
Theory : rationals
Home
Index