Nuprl Lemma : equipollent-nat-rationals-ext

ℕ ~ ℚ


Proof




Definitions occuring in Statement :  rationals: equipollent: B nat:
Definitions unfolded in proof :  member: t ∈ T pi1: fst(t) remainder: rem m eq_int: (i =z j) btrue: tt it: bfalse: ff divide: n ÷ m ifthenelse: if then else fi  compose: g le_int: i ≤j bnot: ¬bb lt_int: i <j subtract: m code-pair: code-pair(a;b) triangular-num: t(n) bottom: uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] equipollent-nat-rationals equipollent_functionality_wrt_equipollent2 equipollent-rationals-ext equipollent-nat-subset-ext decidable__assert iff_transitivity iff_weakening_uiff assert_of_bor assert_of_eq_int assoced_nelim bool_cases member_map select_member any: any x equipollent_functionality_wrt_equipollent equipollent-nat-squared equipollent_weakening_ext-eq product_functionality_wrt_equipollent_left equipollent-int-nat product_functionality_wrt_equipollent_right equipollent-int_upper-nat equipollent-product-com equipollent_transitivity code-pair-bijection equipollent_inversion biject-int-nat so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: or: P ∨ Q squash: T
Lemmas referenced :  equipollent-nat-rationals strictness-spread istype-void lifting-strict-spread strict4-spread lifting-strict-decide strict4-decide lifting-strict-int_eq value-type-has-value int-value-type has-value_wf_base istype-base is-exception_wf istype-universe lifting-strict-less equipollent_functionality_wrt_equipollent2 equipollent-rationals-ext equipollent-nat-subset-ext decidable__assert iff_transitivity iff_weakening_uiff assert_of_bor assert_of_eq_int assoced_nelim bool_cases member_map select_member equipollent_functionality_wrt_equipollent equipollent-nat-squared equipollent_weakening_ext-eq product_functionality_wrt_equipollent_left equipollent-int-nat product_functionality_wrt_equipollent_right equipollent-int_upper-nat equipollent-product-com equipollent_transitivity code-pair-bijection equipollent_inversion biject-int-nat
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination isect_memberEquality_alt voidElimination baseClosed independent_isectElimination independent_pairFormation lambdaFormation_alt callbyvalueIntEq baseApply closedConclusion hypothesisEquality productElimination intEquality universeIsType int_eqExceptionCases inrFormation_alt imageMemberEquality imageElimination exceptionSqequal inlFormation_alt inhabitedIsType sqequalSqle divergentSqle callbyvalueSpread sqleReflexivity equalityIstype dependent_functionElimination independent_functionElimination spreadExceptionCases axiomSqleEquality callbyvalueAdd addExceptionCases

Latex:
\mBbbN{}  \msim{}  \mBbbQ{}



Date html generated: 2019_10_16-AM-11_47_53
Last ObjectModification: 2019_06_26-PM-04_10_11

Theory : rationals


Home Index