Nuprl Lemma : strictness-spread
∀[F:Top]. (let a,b = ⊥ in F[a;b] ~ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
spread: spread def, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
false: False
, 
top: Top
Lemmas referenced : 
bottom-sqle, 
is-exception_wf, 
has-value_wf_base, 
exception-not-bottom, 
top_wf, 
product-value-type, 
value-type-has-value, 
bottom_diverge, 
pair-eta
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueSpread, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
voidElimination, 
spreadExceptionCases, 
axiomSqleEquality, 
productEquality, 
baseClosed, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
sqleReflexivity, 
isect_memberEquality, 
voidEquality, 
sqequalAxiom
Latex:
\mforall{}[F:Top].  (let  a,b  =  \mbot{}  in  F[a;b]  \msim{}  \mbot{})
Date html generated:
2016_05_13-PM-03_43_37
Last ObjectModification:
2016_01_14-PM-07_07_44
Theory : computation
Home
Index