Nuprl Lemma : strictness-spread

[F:Top]. (let a,b = ⊥ in F[a;b] ~ ⊥)


Proof




Definitions occuring in Statement :  bottom: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] spread: spread def sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ not: ¬A implies:  Q uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] false: False top: Top
Lemmas referenced :  bottom-sqle is-exception_wf has-value_wf_base exception-not-bottom top_wf product-value-type value-type-has-value bottom_diverge pair-eta
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueSpread sqequalHypSubstitution hypothesis lemma_by_obid isectElimination equalityTransitivity equalitySymmetry sqequalRule independent_functionElimination because_Cache independent_isectElimination lambdaEquality voidElimination spreadExceptionCases axiomSqleEquality productEquality baseClosed baseApply closedConclusion hypothesisEquality sqleReflexivity isect_memberEquality voidEquality sqequalAxiom

Latex:
\mforall{}[F:Top].  (let  a,b  =  \mbot{}  in  F[a;b]  \msim{}  \mbot{})



Date html generated: 2016_05_13-PM-03_43_37
Last ObjectModification: 2016_01_14-PM-07_07_44

Theory : computation


Home Index