Nuprl Lemma : equipollent-rationals-ext

ℚ {p:ℤ × ℕ+| ↑is-qrep(p)} 


Proof




Definitions occuring in Statement :  is-qrep: is-qrep(p) rationals: equipollent: B nat_plus: + assert: b set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  member: t ∈ T equipollent-rationals assert-is-qrep sq_stable__assert
Lemmas referenced :  equipollent-rationals assert-is-qrep sq_stable__assert
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mBbbQ{}  \msim{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  \muparrow{}is-qrep(p)\} 



Date html generated: 2018_05_21-PM-11_48_59
Last ObjectModification: 2018_05_19-PM-03_56_10

Theory : rationals


Home Index