Nuprl Lemma : equipollent-rationals-ext
ℚ ~ {p:ℤ × ℕ+| ↑is-qrep(p)} 
Proof
Definitions occuring in Statement : 
is-qrep: is-qrep(p)
, 
rationals: ℚ
, 
equipollent: A ~ B
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
equipollent-rationals, 
assert-is-qrep, 
sq_stable__assert
Lemmas referenced : 
equipollent-rationals, 
assert-is-qrep, 
sq_stable__assert
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mBbbQ{}  \msim{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  \muparrow{}is-qrep(p)\} 
Date html generated:
2018_05_21-PM-11_48_59
Last ObjectModification:
2018_05_19-PM-03_56_10
Theory : rationals
Home
Index