Nuprl Lemma : equipollent-rationals
ℚ ~ {p:ℤ × ℕ+| ↑is-qrep(p)} 
Proof
Definitions occuring in Statement : 
is-qrep: is-qrep(p)
, 
rationals: ℚ
, 
equipollent: A ~ B
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
Lemmas referenced : 
rationals_wf, 
biject_wf, 
nat_plus_wf, 
assert_wf, 
is-qrep_wf, 
qrep_wf, 
assert-is-qrep, 
istype-int, 
product_subtype_base, 
int_subtype_base, 
set_subtype_base, 
less_than_wf, 
equals-qrep, 
subtype_base_sq, 
sq_stable__assert, 
assert_elim, 
bool_wf, 
bool_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
productEquality, 
intEquality, 
dependent_functionElimination, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
because_Cache, 
productElimination, 
independent_functionElimination, 
equalityIsType4, 
productIsType, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
inhabitedIsType, 
independent_pairFormation, 
setIsType, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mBbbQ{}  \msim{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  \muparrow{}is-qrep(p)\} 
Date html generated:
2019_10_16-AM-11_47_49
Last ObjectModification:
2018_10_10-PM-01_24_37
Theory : rationals
Home
Index