Nuprl Lemma : equipollent-rationals
ℚ ~ {p:ℤ × ℕ+| ↑is-qrep(p)}
Proof
Definitions occuring in Statement :
is-qrep: is-qrep(p)
,
rationals: ℚ
,
equipollent: A ~ B
,
nat_plus: ℕ+
,
assert: ↑b
,
set: {x:A| B[x]}
,
product: x:A × B[x]
,
int: ℤ
Definitions unfolded in proof :
equipollent: A ~ B
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
nat_plus: ℕ+
,
biject: Bij(A;B;f)
,
inject: Inj(A;B;f)
,
surject: Surj(A;B;f)
,
sq_type: SQType(T)
,
guard: {T}
,
sq_stable: SqStable(P)
,
squash: ↓T
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
Lemmas referenced :
rationals_wf,
biject_wf,
nat_plus_wf,
assert_wf,
is-qrep_wf,
qrep_wf,
assert-is-qrep,
istype-int,
product_subtype_base,
int_subtype_base,
set_subtype_base,
less_than_wf,
equals-qrep,
subtype_base_sq,
sq_stable__assert,
assert_elim,
bool_wf,
bool_subtype_base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
dependent_pairFormation_alt,
lambdaEquality_alt,
universeIsType,
cut,
introduction,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
setEquality,
productEquality,
intEquality,
dependent_functionElimination,
hypothesisEquality,
dependent_set_memberEquality_alt,
because_Cache,
productElimination,
independent_functionElimination,
equalityIsType4,
productIsType,
applyEquality,
sqequalRule,
independent_isectElimination,
lambdaFormation_alt,
natural_numberEquality,
inhabitedIsType,
independent_pairFormation,
setIsType,
instantiate,
cumulativity,
equalityTransitivity,
equalitySymmetry,
setElimination,
rename,
imageMemberEquality,
baseClosed,
imageElimination
Latex:
\mBbbQ{} \msim{} \{p:\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}| \muparrow{}is-qrep(p)\}
Date html generated:
2019_10_16-AM-11_47_49
Last ObjectModification:
2018_10_10-PM-01_24_37
Theory : rationals
Home
Index