Nuprl Lemma : equipollent-rationals

ℚ {p:ℤ × ℕ+| ↑is-qrep(p)} 


Proof




Definitions occuring in Statement :  is-qrep: is-qrep(p) rationals: equipollent: B nat_plus: + assert: b set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  equipollent: B exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a nat_plus: + biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) sq_type: SQType(T) guard: {T} sq_stable: SqStable(P) squash: T assert: b ifthenelse: if then else fi  btrue: tt true: True
Lemmas referenced :  rationals_wf biject_wf nat_plus_wf assert_wf is-qrep_wf qrep_wf assert-is-qrep istype-int product_subtype_base int_subtype_base set_subtype_base less_than_wf equals-qrep subtype_base_sq sq_stable__assert assert_elim bool_wf bool_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation_alt lambdaEquality_alt universeIsType cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin setEquality productEquality intEquality dependent_functionElimination hypothesisEquality dependent_set_memberEquality_alt because_Cache productElimination independent_functionElimination equalityIsType4 productIsType applyEquality sqequalRule independent_isectElimination lambdaFormation_alt natural_numberEquality inhabitedIsType independent_pairFormation setIsType instantiate cumulativity equalityTransitivity equalitySymmetry setElimination rename imageMemberEquality baseClosed imageElimination

Latex:
\mBbbQ{}  \msim{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  \muparrow{}is-qrep(p)\} 



Date html generated: 2019_10_16-AM-11_47_49
Last ObjectModification: 2018_10_10-PM-01_24_37

Theory : rationals


Home Index