Nuprl Lemma : assert-is-qrep

p:ℤ × ℕ+(↑is-qrep(p) ⇐⇒ ∃q:ℚ(qrep(q) p ∈ (ℤ × ℕ+)))


Proof




Definitions occuring in Statement :  is-qrep: is-qrep(p) qrep: qrep(r) rationals: nat_plus: + assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q product: x:A × B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] mk-rational: mk-rational(a;b) subtype_rel: A ⊆B nat_plus: + int_nzero: -o uimplies: supposing a nequal: a ≠ b ∈  not: ¬A false: False guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top is-qrep: is-qrep(p) has-value: (a)↓ uiff: uiff(P;Q) qrep: qrep(r) callbyvalueall: callbyvalueall has-valueall: has-valueall(a) ifthenelse: if then else fi  bfalse: ff spreadn: spread3 nat: or: P ∨ Q sq_type: SQType(T) assoced: b divides: a ge: i ≥  decidable: Dec(P) bool: 𝔹 unit: Unit it: btrue: tt bnot: ¬bb assert: b pi1: fst(t) pi2: snd(t)
Lemmas referenced :  assert_wf is-qrep_wf exists_wf rationals_wf equal_wf nat_plus_wf qrep_wf mk-rational_wf subtype_rel_sets less_than_wf nequal_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base value-type-has-value int-value-type better-gcd_wf bor_wf eq_int_wf gcd_wf or_wf equal-wf-T-base better-gcd-gcd iff_transitivity iff_weakening_uiff assert_of_bor assert_of_eq_int valueall-type-has-valueall product-valueall-type int-valueall-type set-valueall-type evalall-reduce gcd_reduce_property gcd_reduce_wf nat_wf equal-wf-base-T coprime_wf coprime_elim_a subtype_base_sq divides_invar_1 minus-minus divides_reflexivity one_divs_any coprime_elim nat_properties decidable__equal_int intformnot_wf itermMultiply_wf int_formula_prop_not_lemma int_term_value_mul_lemma assoced_elim le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot le_wf intformle_wf int_formula_prop_le_lemma decidable__lt product_subtype_base set_subtype_base qrep-coprime absval_wf absval_ifthenelse lt_int_wf bnot_wf not_wf minus-is-int-iff itermMinus_wf int_term_value_minus_lemma false_wf bool_cases assert_of_lt_int assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination productElimination independent_pairEquality hypothesisEquality hypothesis sqequalRule lambdaEquality productEquality intEquality dependent_pairFormation applyEquality because_Cache natural_numberEquality independent_isectElimination setElimination rename setEquality applyLambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll baseClosed independent_functionElimination callbyvalueReduce minusEquality equalityTransitivity equalitySymmetry orFunctionality multiplyEquality baseApply closedConclusion unionElimination instantiate cumulativity equalityElimination promote_hyp dependent_set_memberEquality inlFormation inrFormation pointwiseFunctionality impliesFunctionality

Latex:
\mforall{}p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  (\muparrow{}is-qrep(p)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}q:\mBbbQ{}.  (qrep(q)  =  p))



Date html generated: 2018_05_21-PM-11_48_55
Last ObjectModification: 2017_07_26-PM-06_43_15

Theory : rationals


Home Index