Nuprl Lemma : assert-is-qrep
∀p:ℤ × ℕ+. (↑is-qrep(p) 
⇐⇒ ∃q:ℚ. (qrep(q) = p ∈ (ℤ × ℕ+)))
Proof
Definitions occuring in Statement : 
is-qrep: is-qrep(p)
, 
qrep: qrep(r)
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
product: x:A × B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
mk-rational: mk-rational(a;b)
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
is-qrep: is-qrep(p)
, 
has-value: (a)↓
, 
uiff: uiff(P;Q)
, 
qrep: qrep(r)
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
spreadn: spread3, 
nat: ℕ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
assoced: a ~ b
, 
divides: b | a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bnot: ¬bb
, 
assert: ↑b
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
assert_wf, 
is-qrep_wf, 
exists_wf, 
rationals_wf, 
equal_wf, 
nat_plus_wf, 
qrep_wf, 
mk-rational_wf, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
better-gcd_wf, 
bor_wf, 
eq_int_wf, 
gcd_wf, 
or_wf, 
equal-wf-T-base, 
better-gcd-gcd, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_eq_int, 
valueall-type-has-valueall, 
product-valueall-type, 
int-valueall-type, 
set-valueall-type, 
evalall-reduce, 
gcd_reduce_property, 
gcd_reduce_wf, 
nat_wf, 
equal-wf-base-T, 
coprime_wf, 
coprime_elim_a, 
subtype_base_sq, 
divides_invar_1, 
minus-minus, 
divides_reflexivity, 
one_divs_any, 
coprime_elim, 
nat_properties, 
decidable__equal_int, 
intformnot_wf, 
itermMultiply_wf, 
int_formula_prop_not_lemma, 
int_term_value_mul_lemma, 
assoced_elim, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
intformle_wf, 
int_formula_prop_le_lemma, 
decidable__lt, 
product_subtype_base, 
set_subtype_base, 
qrep-coprime, 
absval_wf, 
absval_ifthenelse, 
lt_int_wf, 
bnot_wf, 
not_wf, 
minus-is-int-iff, 
itermMinus_wf, 
int_term_value_minus_lemma, 
false_wf, 
bool_cases, 
assert_of_lt_int, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
intEquality, 
dependent_pairFormation, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
applyLambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
baseClosed, 
independent_functionElimination, 
callbyvalueReduce, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
orFunctionality, 
multiplyEquality, 
baseApply, 
closedConclusion, 
unionElimination, 
instantiate, 
cumulativity, 
equalityElimination, 
promote_hyp, 
dependent_set_memberEquality, 
inlFormation, 
inrFormation, 
pointwiseFunctionality, 
impliesFunctionality
Latex:
\mforall{}p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  (\muparrow{}is-qrep(p)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}q:\mBbbQ{}.  (qrep(q)  =  p))
Date html generated:
2018_05_21-PM-11_48_55
Last ObjectModification:
2017_07_26-PM-06_43_15
Theory : rationals
Home
Index