Nuprl Lemma : qrep-coprime

[r:ℚ]. (|gcd(fst(qrep(r));snd(qrep(r)))| 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  qrep: qrep(r) rationals: gcd: gcd(a;b) absval: |i| uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q bfalse: ff pi2: snd(t) pi1: fst(t) it: unit: Unit bool: 𝔹 spreadn: spread3 btrue: tt ifthenelse: if then else fi  has-valueall: has-valueall(a) has-value: (a)↓ callbyvalueall: callbyvalueall nat: so_apply: x[s] so_lambda: λ2x.t[x] top: Top implies:  Q qmul: s qinv: 1/r qrep: qrep(r) qdiv: (r/s) prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) subtype_rel: A ⊆B not: ¬A cand: c∧ B nat_plus: + exists: x:A. B[x] member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] gcd_p: GCD(a;b;y) coprime: CoPrime(a,b) assoced: b absval: |i| rev_implies:  Q true: True less_than': less_than'(a;b) le: A ≤ B squash: T iff: ⇐⇒ Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  le_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_le_int eqtt_to_assert bool_wf le_int_wf gcd_reduce_wf gcd_reduce_property evalall-sqequal product-valueall-type evalall-reduce int-valueall-type valueall-type-has-valueall nat_wf nat_plus_wf pi2_wf equal_wf pi1_wf_top qrep_wf gcd_wf absval_wf equal-wf-T-base int_subtype_base rationals_wf equal-wf-base not_wf qeq_wf2 assert_wf int-subtype-rationals assert-qeq nat_plus_properties q-elim one_divs_any gcd_is_divisor_2 gcd_is_divisor_1 iff_weakening_equal false_wf absval_pos assoced_elim coprime_bezout_id1 coprime_bezout_id2 nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermMultiply_wf itermMinus_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_minus_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  cumulativity instantiate promote_hyp dependent_pairFormation equalityElimination unionElimination multiplyEquality closedConclusion baseApply productEquality isintReduceTrue callbyvalueReduce lambdaEquality independent_functionElimination equalityTransitivity voidEquality voidElimination isect_memberEquality independent_pairEquality intEquality lambdaFormation applyLambdaEquality equalitySymmetry hyp_replacement baseClosed because_Cache independent_isectElimination natural_numberEquality sqequalRule applyEquality impliesFunctionality addLevel rename setElimination hypothesis isectElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation imageMemberEquality dependent_set_memberEquality levelHypothesis equalityUniverse imageElimination minusEquality dependent_pairFormation_alt approximateComputation lambdaEquality_alt int_eqEquality Error :memTop,  universeIsType equalityIstype inhabitedIsType sqequalBase productIsType

Latex:
\mforall{}[r:\mBbbQ{}].  (|gcd(fst(qrep(r));snd(qrep(r)))|  =  1)



Date html generated: 2020_05_20-AM-09_13_18
Last ObjectModification: 2020_02_01-AM-11_26_41

Theory : rationals


Home Index