Nuprl Lemma : coprime_bezout_id2

a,b:ℤ.  ((∃x,y:ℤ(((a x) (b y)) 1 ∈ ℤ))  CoPrime(a,b))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) all: x:A. B[x] exists: x:A. B[x] implies:  Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B coprime: CoPrime(a,b) gcd_p: GCD(a;b;y) and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] prop: squash: T true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_subtype_base istype-int one_divs_any divides_wf divisor_of_mul divisor_of_sum squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalRule Error :productIsType,  Error :inhabitedIsType,  hypothesisEquality Error :equalityIsType4,  cut addEquality multiplyEquality applyEquality introduction extract_by_obid hypothesis sqequalHypSubstitution natural_numberEquality productElimination thin dependent_functionElimination independent_pairFormation Error :universeIsType,  isectElimination equalityTransitivity equalitySymmetry independent_functionElimination because_Cache Error :lambdaEquality_alt,  imageElimination imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination

Latex:
\mforall{}a,b:\mBbbZ{}.    ((\mexists{}x,y:\mBbbZ{}.  (((a  *  x)  +  (b  *  y))  =  1))  {}\mRightarrow{}  CoPrime(a,b))



Date html generated: 2019_06_20-PM-02_23_37
Last ObjectModification: 2018_10_03-AM-00_12_53

Theory : num_thy_1


Home Index