Nuprl Lemma : coprime_bezout_id1
∀a,b:ℤ.  (CoPrime(a,b) 
⇒ (∃x,y:ℤ. (((a * x) + (b * y)) = 1 ∈ ℤ)))
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
Lemmas referenced : 
mul-swap, 
minus-one-mul, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
exists_wf, 
equal_wf, 
assoced_elim, 
coprime_wf, 
coprime_bezout_id0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
isectElimination, 
intEquality, 
addEquality, 
multiplyEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
sqequalRule, 
lambdaEquality, 
minusEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
independent_isectElimination, 
int_eqEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  {}\mRightarrow{}  (\mexists{}x,y:\mBbbZ{}.  (((a  *  x)  +  (b  *  y))  =  1)))
Date html generated:
2016_05_14-PM-04_20_40
Last ObjectModification:
2016_01_14-PM-11_40_12
Theory : num_thy_1
Home
Index