Nuprl Lemma : coprime_bezout_id1
∀a,b:ℤ. (CoPrime(a,b)
⇒ (∃x,y:ℤ. (((a * x) + (b * y)) = 1 ∈ ℤ)))
Proof
Definitions occuring in Statement :
coprime: CoPrime(a,b)
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
multiply: n * m
,
add: n + m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
or: P ∨ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
top: Top
,
decidable: Dec(P)
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
Lemmas referenced :
mul-swap,
minus-one-mul,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_term_value_mul_lemma,
int_term_value_add_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermConstant_wf,
itermMultiply_wf,
itermAdd_wf,
intformeq_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__equal_int,
exists_wf,
equal_wf,
assoced_elim,
coprime_wf,
coprime_bezout_id0
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
independent_functionElimination,
hypothesis,
productElimination,
isectElimination,
intEquality,
addEquality,
multiplyEquality,
natural_numberEquality,
unionElimination,
dependent_pairFormation,
sqequalRule,
lambdaEquality,
minusEquality,
isect_memberEquality,
voidElimination,
voidEquality,
because_Cache,
independent_isectElimination,
int_eqEquality,
independent_pairFormation,
computeAll
Latex:
\mforall{}a,b:\mBbbZ{}. (CoPrime(a,b) {}\mRightarrow{} (\mexists{}x,y:\mBbbZ{}. (((a * x) + (b * y)) = 1)))
Date html generated:
2016_05_14-PM-04_20_40
Last ObjectModification:
2016_01_14-PM-11_40_12
Theory : num_thy_1
Home
Index