Nuprl Lemma : coprime_bezout_id1

a,b:ℤ.  (CoPrime(a,b)  (∃x,y:ℤ(((a x) (b y)) 1 ∈ ℤ)))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) all: x:A. B[x] exists: x:A. B[x] implies:  Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] top: Top decidable: Dec(P) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A
Lemmas referenced :  mul-swap minus-one-mul int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf itermMultiply_wf itermAdd_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int exists_wf equal_wf assoced_elim coprime_wf coprime_bezout_id0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination isectElimination intEquality addEquality multiplyEquality natural_numberEquality unionElimination dependent_pairFormation sqequalRule lambdaEquality minusEquality isect_memberEquality voidElimination voidEquality because_Cache independent_isectElimination int_eqEquality independent_pairFormation computeAll

Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  {}\mRightarrow{}  (\mexists{}x,y:\mBbbZ{}.  (((a  *  x)  +  (b  *  y))  =  1)))



Date html generated: 2016_05_14-PM-04_20_40
Last ObjectModification: 2016_01_14-PM-11_40_12

Theory : num_thy_1


Home Index