Nuprl Lemma : coprime_bezout_id0

a,b:ℤ.  (CoPrime(a,b)  (∃x,y:ℤ(((a x) (b y)) 1)))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) assoced: b all: x:A. B[x] exists: x:A. B[x] implies:  Q multiply: m add: m natural_number: $n int:
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] exists: x:A. B[x] member: t ∈ T coprime: CoPrime(a,b) implies:  Q all: x:A. B[x] top: Top
Lemmas referenced :  istype-int coprime_wf bezout_ident gcd_p_sym gcd_unique assoced_wf mul-commutes istype-void add-commutes
Rules used in proof :  Error :inhabitedIsType,  hypothesis isectElimination Error :universeIsType,  productElimination hypothesisEquality thin dependent_functionElimination extract_by_obid introduction cut sqequalHypSubstitution Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination natural_numberEquality multiplyEquality addEquality Error :productIsType,  sqequalRule Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  voidElimination

Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  {}\mRightarrow{}  (\mexists{}x,y:\mBbbZ{}.  (((a  *  x)  +  (b  *  y))  \msim{}  1)))



Date html generated: 2019_06_20-PM-02_23_34
Last ObjectModification: 2019_01_15-PM-01_48_41

Theory : num_thy_1


Home Index