Nuprl Lemma : coprime_elim

a,b:ℤ.  (CoPrime(a,b) ⇐⇒ ∀c:ℤ((c a)  (c b)  (c 1)))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) assoced: b divides: a all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n int:
Definitions unfolded in proof :  assoced: b coprime: CoPrime(a,b) gcd_p: GCD(a;b;y) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T cand: c∧ B uall: [x:A]. B[x] prop: rev_implies:  Q guard: {T}
Lemmas referenced :  one_divs_any divides_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  independent_pairFormation sqequalHypSubstitution productElimination thin cut hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination introduction extract_by_obid Error :universeIsType,  isectElimination Error :inhabitedIsType,  Error :productIsType,  natural_numberEquality Error :functionIsType

Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}c:\mBbbZ{}.  ((c  |  a)  {}\mRightarrow{}  (c  |  b)  {}\mRightarrow{}  (c  \msim{}  1)))



Date html generated: 2019_06_20-PM-02_23_24
Last ObjectModification: 2018_10_03-AM-00_12_41

Theory : num_thy_1


Home Index