Nuprl Lemma : equipollent-nat-subset-ext

[T:Type]. ∀P:T ⟶ ℙ((∀x:T. Dec(P[x]))  (∀L:T List. ∃x:T. (P[x] ∧ (x ∈ L))))  ℕ  ℕ {x:T| P[x]} )


Proof




Definitions occuring in Statement :  equipollent: B l_member: (x ∈ l) list: List nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T isl: isl(x) btrue: tt it: bfalse: ff enumerate: enumerate(P;n) compose: g bool-size: 𝔹size(k;f) ifthenelse: if then else fi  uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] equipollent-nat-subset equipollent_transitivity equipollent-nat-decidable-subset iff_weakening_equal decidable__le any: any x decidable__assert so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equipollent-nat-subset spread-axiom-sqequal-bottom lifting-strict-spread has-value_wf_base base_wf is-exception_wf strict4-spread lifting-strict-decide strict4-decide value-type-has-value int-value-type top_wf equal_wf equipollent_transitivity equipollent-nat-decidable-subset iff_weakening_equal decidable__le decidable__assert
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination isect_memberEquality voidElimination voidEquality baseClosed independent_isectElimination independent_pairFormation lambdaFormation callbyvalueApply baseApply closedConclusion hypothesisEquality applyExceptionCases inrFormation imageMemberEquality imageElimination inlFormation callbyvalueAdd productElimination because_Cache addExceptionCases exceptionSqequal intEquality sqequalSqle divergentSqle callbyvalueSpread productEquality sqleReflexivity dependent_functionElimination independent_functionElimination spreadExceptionCases axiomSqleEquality

Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbP{}
        ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (\mforall{}L:T  List.  \mexists{}x:T.  (P[x]  \mwedge{}  (\mneg{}(x  \mmember{}  L))))  {}\mRightarrow{}  \mBbbN{}  \msim{}  T  {}\mRightarrow{}  \mBbbN{}  \msim{}  \{x:T|  P[x]\}  )



Date html generated: 2018_05_21-PM-07_59_31
Last ObjectModification: 2018_05_19-PM-04_54_00

Theory : general


Home Index