Nuprl Lemma : equipollent-nat-subset

[T:Type]. ∀P:T ⟶ ℙ((∀x:T. Dec(P[x]))  (∀L:T List. ∃x:T. (P[x] ∧ (x ∈ L))))  ℕ  ℕ {x:T| P[x]} )


Proof




Definitions occuring in Statement :  equipollent: B l_member: (x ∈ l) list: List nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equipollent: B exists: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] prop: nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A biject: Bij(A;B;f) surject: Surj(A;B;f) cand: c∧ B guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_stable: SqStable(P) squash: T inject: Inj(A;B;f)
Lemmas referenced :  equipollent_transitivity int_term_value_constant_lemma itermConstant_wf sq_stable_from_decidable biject_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties member_upto equal_wf subtype_rel_list member_map decidable__le le_wf iff_weakening_equal upto_wf false_wf int_seg_subtype_nat subtype_rel_dep_function int_seg_wf map_wf decidable_wf l_member_wf not_wf and_wf exists_wf list_wf all_wf equipollent_wf nat_wf equipollent-nat-decidable-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid dependent_functionElimination sqequalRule lambdaEquality applyEquality hypothesisEquality hypothesis independent_functionElimination because_Cache isectElimination functionEquality cumulativity universeEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation dependent_pairFormation equalityTransitivity equalitySymmetry productEquality unionElimination voidElimination int_eqEquality intEquality isect_memberEquality voidEquality computeAll setEquality functionExtensionality introduction imageMemberEquality baseClosed imageElimination dependent_set_memberEquality promote_hyp

Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbP{}
        ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (\mforall{}L:T  List.  \mexists{}x:T.  (P[x]  \mwedge{}  (\mneg{}(x  \mmember{}  L))))  {}\mRightarrow{}  \mBbbN{}  \msim{}  T  {}\mRightarrow{}  \mBbbN{}  \msim{}  \{x:T|  P[x]\}  )



Date html generated: 2016_05_15-PM-05_28_59
Last ObjectModification: 2016_01_16-PM-00_32_00

Theory : general


Home Index