Nuprl Lemma : equipollent-nat-subset
∀[T:Type]. ∀P:T ⟶ ℙ. ((∀x:T. Dec(P[x])) 
⇒ (∀L:T List. ∃x:T. (P[x] ∧ (¬(x ∈ L)))) 
⇒ ℕ ~ T 
⇒ ℕ ~ {x:T| P[x]} )
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
l_member: (x ∈ l)
, 
list: T List
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
prop: ℙ
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
cand: A c∧ B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
inject: Inj(A;B;f)
Lemmas referenced : 
equipollent_transitivity, 
int_term_value_constant_lemma, 
itermConstant_wf, 
sq_stable_from_decidable, 
biject_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
member_upto, 
equal_wf, 
subtype_rel_list, 
member_map, 
decidable__le, 
le_wf, 
iff_weakening_equal, 
upto_wf, 
false_wf, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
int_seg_wf, 
map_wf, 
decidable_wf, 
l_member_wf, 
not_wf, 
and_wf, 
exists_wf, 
list_wf, 
all_wf, 
equipollent_wf, 
nat_wf, 
equipollent-nat-decidable-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
isectElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
unionElimination, 
voidElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
setEquality, 
functionExtensionality, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
promote_hyp
Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbP{}
        ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (\mforall{}L:T  List.  \mexists{}x:T.  (P[x]  \mwedge{}  (\mneg{}(x  \mmember{}  L))))  {}\mRightarrow{}  \mBbbN{}  \msim{}  T  {}\mRightarrow{}  \mBbbN{}  \msim{}  \{x:T|  P[x]\}  )
Date html generated:
2016_05_15-PM-05_28_59
Last ObjectModification:
2016_01_16-PM-00_32_00
Theory : general
Home
Index