Nuprl Lemma : equipollent-nat-decidable-subset

P:ℕ ⟶ ℙ((∀n:ℕDec(P[n]))  (∀m:ℕ. ∃n:ℕ(P[n] ∧ (m ≤ n)))  ℕ {n:ℕP[n]} )


Proof




Definitions occuring in Statement :  equipollent: B nat: decidable: Dec(P) prop: so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q decidable: Dec(P) or: P ∨ Q exists: x:A. B[x] member: t ∈ T isl: isl(x) iff: ⇐⇒ Q and: P ∧ Q assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff false: False uall: [x:A]. B[x] rev_implies:  Q true: True not: ¬A so_apply: x[s] subtype_rel: A ⊆B nat: prop: equipollent: B uimplies: supposing a so_lambda: λ2x.t[x] biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) sq_type: SQType(T) guard: {T} ge: i ≥  less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B less_than': less_than'(a;b) bool-size: 𝔹size(k;f) enumerate: enumerate(P;n) subtract: m bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k bnot: ¬bb cand: c∧ B has-value: (a)↓ sq_stable: SqStable(P)
Lemmas referenced :  btrue_wf bfalse_wf istype-nat istype-true istype-void istype-assert istype-le subtype_rel_self decidable_wf enumerate_wf subtype_rel_sets_simple nat_wf assert_wf set_subtype_base le_wf istype-int int_subtype_base biject_wf decidable__lt enumerate-increases subtype_base_sq nat_properties decidable__equal_nat full-omega-unsat intformless_wf itermVar_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf decidable__equal_int intformand_wf intformnot_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__assert bool-size_wf subtype_rel_function bool_wf int_seg_wf int_seg_subtype_nat istype-false ge_wf istype-less_than subtract-1-ge-0 primrec0_lemma zero-add mu_wf itermAdd_wf int_term_value_add_lemma squash_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma minus-one-mul add-commutes add-associates add-mul-special zero-mul primrec-unroll lt_int_wf uiff_transitivity equal-wf-base less_than_wf eqtt_to_assert assert_of_lt_int le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal-wf-T-base not_wf assert_of_bnot int_seg_properties add-is-int-iff false_wf mu-unroll bool_cases_sqequal bool_subtype_base assert-bnot add-zero assert_elim not_assert_elim btrue_neq_bfalse value-type-has-value int-value-type add-swap equal_wf true_wf istype-universe add_nat_wf bool_cases sq_stable__assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut rename sqequalHypSubstitution sqequalRule dependent_pairFormation_alt lambdaEquality_alt applyEquality hypothesisEquality inhabitedIsType hypothesis thin unionElimination introduction extract_by_obid equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation voidElimination isectElimination because_Cache natural_numberEquality universeIsType functionIsType productIsType productElimination promote_hyp setElimination instantiate universeEquality independent_isectElimination setIsType intEquality sqequalBase setEquality cumulativity imageElimination approximateComputation int_eqEquality Error :memTop,  dependent_set_memberEquality_alt addEquality intWeakElimination axiomEquality functionIsTypeImplies productEquality functionExtensionality_alt imageMemberEquality baseClosed equalityElimination baseApply closedConclusion applyLambdaEquality pointwiseFunctionality minusEquality callbyvalueReduce hyp_replacement functionEquality

Latex:
\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  Dec(P[n]))  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  \mexists{}n:\mBbbN{}.  (P[n]  \mwedge{}  (m  \mleq{}  n)))  {}\mRightarrow{}  \mBbbN{}  \msim{}  \{n:\mBbbN{}|  P[n]\}  )



Date html generated: 2020_05_20-AM-08_11_08
Last ObjectModification: 2020_01_04-PM-11_12_30

Theory : general


Home Index