Nuprl Lemma : bool-size_wf

[k:ℕ]. ∀[f:ℕk ⟶ 𝔹].  (𝔹size(k;f) ∈ ℕ1)


Proof




Definitions occuring in Statement :  bool-size: 𝔹size(k;f) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: bool-size: 𝔹size(k;f) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) guard: {T} bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf bool_wf primrec-unroll decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf false_wf lelt_wf subtype_rel_dep_function int_seg_subtype subtype_rel_self eq_int_wf eqtt_to_assert assert_of_eq_int subtract-add-cancel int_seg_properties intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-member-int_seg1 decidable__lt add-subtract-cancel itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality unionElimination dependent_set_memberEquality imageMemberEquality baseClosed applyEquality because_Cache equalityElimination productElimination applyLambdaEquality promote_hyp instantiate cumulativity functionExtensionality addEquality minusEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbB{}].    (\mBbbB{}size(k;f)  \mmember{}  \mBbbN{}k  +  1)



Date html generated: 2018_05_21-PM-07_41_43
Last ObjectModification: 2017_07_26-PM-05_15_33

Theory : general


Home Index