Nuprl Lemma : enumerate-increases

[P:ℕ ⟶ 𝔹]. ∀[n,m:ℕ].  enumerate(P;n) < enumerate(P;m) supposing n < supposing ∀n:ℕ. ∃k:ℕ((↑(P k)) ∧ (n ≤ k))


Proof




Definitions occuring in Statement :  enumerate: enumerate(P;n) nat: assert: b bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: subtype_rel: A ⊆B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q bfalse: ff prop: not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q top: Top enumerate: enumerate(P;n) so_apply: x[s] so_lambda: λ2x.t[x] has-value: (a)↓ decidable: Dec(P) nequal: a ≠ b ∈  true: True subtract: m le: A ≤ B less_than: a < b squash: T cand: c∧ B
Lemmas referenced :  istype-less_than member-less_than enumerate_wf istype-nat istype-assert istype-le bool_wf nat_wf add-subtract-cancel neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties assert_of_eq_int eqtt_to_assert eq_int_wf primrec-unroll set_wf assert_wf int-value-type value-type-has-value le_wf int_formula_prop_not_lemma intformnot_wf decidable__le mu_wf assert_elim add-zero zero-mul zero-add add-commutes add-mul-special add-swap minus-one-mul minus-add add-associates int_subtype_base set_subtype_base add-is-int-iff int_term_value_subtract_lemma itermSubtract_wf subtract_wf int_formula_prop_less_lemma intformless_wf decidable__lt full-omega-unsat istype-int ge_wf subtract-1-ge-0 less_than_functionality le_weakening le_weakening2 squash_wf less_than_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality_alt independent_isectElimination applyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry isectIsTypeImplies because_Cache functionIsType productIsType universeIsType lambdaFormation independent_functionElimination cumulativity instantiate promote_hyp computeAll independent_pairFormation dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation productElimination equalityElimination unionElimination voidEquality voidElimination isect_memberEquality natural_numberEquality addEquality setEquality functionExtensionality callbyvalueReduce dependent_set_memberEquality multiplyEquality baseClosed closedConclusion baseApply applyLambdaEquality lambdaFormation_alt intWeakElimination approximateComputation dependent_pairFormation_alt Error :memTop,  functionIsTypeImplies dependent_set_memberEquality_alt imageElimination functionEquality productEquality hyp_replacement equalityIstype imageMemberEquality

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}]
    \mforall{}[n,m:\mBbbN{}].    enumerate(P;n)  <  enumerate(P;m)  supposing  n  <  m 
    supposing  \mforall{}n:\mBbbN{}.  \mexists{}k:\mBbbN{}.  ((\muparrow{}(P  k))  \mwedge{}  (n  \mleq{}  k))



Date html generated: 2020_05_20-AM-08_10_51
Last ObjectModification: 2020_01_04-PM-11_12_55

Theory : general


Home Index